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Under the assumption that individuals know the conditional distributions of sig-
nals given the payoff-relevant parameters, existing results conclude that as indi-
viduals observe infinitely many signals, their beliefs about the parameters will
eventually merge. We first show that these results are fragile when individuals
are uncertain about the signal distributions: given any such model, vanishingly
small individual uncertainty about the signal distributions can lead to substantial
(nonvanishing) differences in asymptotic beliefs. Under a uniform convergence
assumption, we then characterize the conditions under which a small amount of
uncertainty leads to significant asymptotic disagreement.
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1. Introduction

1.1 Motivation

The common-prior assumption is one of the cornerstones of modern economic anal-
ysis. Most models assume that the players in a game have a common prior about the
game form and the payoffs. For example, they postulate that state (e.g., a payoff-relevant
parameter) θ is drawn from a commonly known distribution G, even though each player
may also have additional information about some components of θ. The typical justi-
fication for the common-prior assumption comes from learning ; individuals, through
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their own experiences and the communication of others, will have access to a history of
events informative about the state θ and this process will lead to “agreement” among in-
dividuals about the distribution of θ. A strong version of this view is expressed in Savage
(1954, p. 48) as the statement that a Bayesian individual, who does not assign zero prob-
ability to “the truth,” will learn it eventually as long as the signals are informative about
the truth. An immediate implication of this result is that two individuals who observe
the same sequence of signals will ultimately agree, even if they start with very different
priors.

Despite this powerful intuition, disagreement is the rule rather than the exception in
practice. For example, there is typically considerable disagreement among economists
working on a certain topic. Similarly, there are deep divides about religious beliefs within
populations with shared experiences. In most cases, the source of disagreement does
not seem to be differences in observations or experiences. Instead, individuals appear
to interpret the available data differently. For example, an estimate showing that there
are peer effects is interpreted very differently by two economists starting with differ-
ent priors. An economist believing that peer effects are small and unimportant appears
more likely to judge the data or the methods leading to this estimate to be unreliable
and thus to attach less importance to this evidence.

In this paper, we investigate the outcome of learning about an underlying state by
two Bayesian individuals with different priors when they are possibly uncertain about
the conditional distributions (or interpretations) of signals. This leads to a potential
identification problem, as the same long-run frequency of signals may result at multi-
ple states. Hence, even though the individuals will learn the asymptotic frequency of
signals, they may not always be able to infer the state θ, and initial differences in their
beliefs may translate into differences in asymptotic beliefs. When the amount of uncer-
tainty is small, the identification problem is also small in the sense that each individ-
ual finds it highly likely that he will eventually assign high probability to the true state.
One may then expect that the asymptotic beliefs of the two individuals about the un-
derlying states should be close as well. If so, the common-prior assumption would be
a good approximation when players have a long common experience and face only a
small amount of uncertainty about how the signals are related to the states.

Our focus in this paper is to investigate the validity of this line of argument. In par-
ticular, we study whether a small amount of uncertainty leads only to a small amount of
disagreement asymptotically. Our main result shows that this is never the case: for every
model, there exists a vanishingly small amount of uncertainty such that under this un-
certainty both individuals assign nearly probability 1 that they will asymptotically hold
significantly different beliefs about the underlying state. This result implies that learning
foundations of common priors are not as strong as generally presumed.

1.2 Formulation

Consider the following example, which illustrates the main ideas presented below. There
are two states θ ∈ {A�B} and binary signals st ∈ {a�b}. Two individuals with given pri-
ors publicly observe a sequence of signals, {st}nt=1, and form their posteriors about the
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state θ. Conditional on the state, the signals are independently and identically dis-
tributed, but the individuals do not necessarily know this distribution. Letting pθ be
this unknown probability of st = a at state θ, we assume that each individual has a pos-
sibly nondegenerate belief about pθ. This belief has a cumulative distribution function
(c.d.f.) Fi

θ; the density, when it exists, is denoted by f iθ. The standard model used for
analysis of learning and agreement in the literature is the special case of this environ-
ment where each Fi

θ puts all of its mass at some pθ, with pA > 1
2 > pB. Throughout, we

refer to this benchmark as the (or a) standard model. Thus in contrast to the standard
model, where the informativeness of signals is known, the individuals in our environ-
ments may face some uncertainty about the informativeness of signals. (Consequently,
as they observe additional signals, they learn not only about the state θ, but also about
the interpretation of the signals.)

Asymptotic learning and asymptotic agreement in the standard model rely on the
assumption that the supports of Fi

A and Fi
B are disjoint (which we refer to as the full-

identification assumption). In that case, each individual can identify the state from the
long-run frequency of signals (as n → ∞) and eventually learn the true state (asymptotic
learning ). Under additional mild assumptions, they also eventually agree (asymptotic
agreement).

A key observation of our paper is that asymptotic agreement under full identification
rests on how individuals treat zero-probability events. In particular, under full identifi-
cation, individuals do not question their models even along sample paths that are im-
possible according to their model, because they attribute the frequencies that are out-
side the support of their model to sampling variation, regardless of how unlikely such
sampling variation may be and how large their samples are. An implication is that along
such sample paths their beliefs about the future frequencies diverge from the empirical
long-run frequency, leading to a form of inconsistency. This inconsistency and the un-
willingness of individuals to adjust their models in the face of overwhelming evidence
to the contrary are unappealing features of the standard formulation. More importantly,
support restrictions are clearly idealizations that equate small probabilities with zero
probability; they can be justified only when we know that behavior under small and
zero probabilities are similar. Whether or not this is so can only be studied by first con-
sidering models without such support restrictions.

Motivated by these observations, we relax all such support restrictions and instead
assume that each Fi

θ has full support. Under full support, as each individual observes
additional signals, his beliefs about the future frequencies approach the empirical long-
run frequency. By Bayes rule, beliefs about the underlying payoff-relevant state are de-
termined by the likelihood ratio f iB/f

i
A of the densities at the realized long-run frequen-

cies. Sampling variation (which disappears due to the strong law of large numbers) plays
no role in the formation of asymptotic beliefs.

An immediate implication of the full support assumption is that there will be no full
identification. Consequently, each individual recognizes that he will never fully learn
the true state, as some uncertainty about the informativeness of the signals and the state
remains forever. This also implies that, except for the knife-edge cases, each individual
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is also certain that asymptotic agreement will fail, in the sense that some amount of
differences of opinions will remain forever.

In our main results, we investigate whether the amount of disagreement is small
(vanishing) when we are arbitrarily close to a fully identified model. We consider a stan-
dard (fully identified) model parameterized by a vector (p1

A�p
1
B�p

2
A�p

2
B), where each Fi

θ

puts probability 1 on a single frequency pi
θ. We then consider families {Fi

θ�m} of distribu-

tions with full support that become increasingly concentrated on pi
θ (as m→ ∞). Here, a

family {Fi
θ�m} is a possible relaxation of the idealized assumptions in the standard model.

Our main question is thus whether the amount of asymptotic disagreement vanishes in
the limit as m → ∞ (as the model is arbitrarily close to the standard model). Our first
main result shows that asymptotic agreement is never robust to all relaxations. More
precisely, for every standard model (here parameterized by the vector (p1

A�p
1
B�p

2
A�p

2
B)),

we construct a family {Fi
θ�m} of distributions that become more and more concentrated

around pi
θ, such that the amount of asymptotic disagreement eventually exceeds a fixed

positive level for almost all sample paths and for all m. This result therefore implies that
asymptotic agreement is “fragile”—small perturbations of the standard model lead to
significant asymptotic disagreement.

The idea underlying this fragility result is intuitive. As m → ∞ and we approach the
standard model, the identification problem vanishes, in the sense that each individual
i assigns nearly probability 1 to the event that he will learn the true state. However,
even though asymptotic learning applies, asymptotic agreement is considerably more
demanding. For asymptotic agreement, each individual must be certain that the other
individual will also eventually learn the true state. While this latter requirement is true in
the standard model, it is often not the case near the standard model. In particular, near
any standard model, each individual assigns a high probability to a small set of long-run
frequencies (thus ensuring asymptotic learning). Yet, even if F1

θ and F2
θ are very close

to each other, the likelihood ratios of the densities may remain significantly different on
those sets. In particular, j may assign a low probability to the true state at the frequencies
i finds likely. In that case, i would be nearly certain that j will fail to learn the true state
and the beliefs will be different in the long run. Importantly, this conclusion is true even
for (instances of) the standard model when p1

θ = p2
θ, so that the individuals agree on the

likely frequencies.
Our second main result provides a tight characterization of the conditions under

which asymptotic agreement is fragile when the families of distributions {Fi
θ�m} is such

that the resulting likelihood ratios converge uniformly to a continuous function. This
uniform convergence requirement ensures that asymptotic beliefs are not highly sen-
sitive to the long-run frequency of signals as m → ∞. In the context of a canonical
example, our characterization shows that the asymptotic agreement results are fragile
when the families of distributions {Fi

θ�m} converging to the standard model have regu-
larly varying (polynomial) tails, such as the Pareto or the log-normal distributions, but
not when they have rapidly varying (exponential) tails, such as the normal and the ex-
ponential distributions.
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Our third main result shows that agreement is “continuous” in the medium run.1

Consider any standard model with asymptotic agreement and any family {Fi
θ�m} of mod-

els converging to the standard model. For any model Fi
θ�m, individual beliefs may be far

apart at the beginning and also asymptotically (as n → ∞). However, we show that in the
middle, the beliefs of the two individuals will be arbitrarily close to each other for long
periods, provided that m is sufficiently large. The intuition for this result is as follows.
The events concerning a few signal realizations correspond to only “coarse” information.
This information is similar under Fi

θ�m and the standard model, so that individual beliefs
are similar in the two models and the disagreement decreases with more observations
for a while. However, eventually, individuals start using “finer” information in updat-
ing their beliefs and it is this finer information that is different under the two models.
Therefore, eventually beliefs may grow apart under Fi

θ�m, while they keep approaching
each other under the standard model.

1.3 Interpretation

Our results cast doubt on the idea that the common-prior assumption may be justified
by learning. They imply that in many environments—even when there is little uncer-
tainty so that each individual believes that he will learn the true state—Bayesian learning
does not necessarily imply agreement about the relevant parameters. Consequently, the
strategic outcomes may be significantly different from those in the common-prior en-
vironments.2 Whether this common-prior assumption is warranted therefore depends
on the specific setting and what type of information individuals are trying to glean from
the data.

The relevance of our results for theoretical modeling depends on whether our full-
support assumption is a better approximation to reality and a more useful modeling tool
for certain situations than the standard full-identification assumption. The full-support
assumption does not rule out that pB, the unknown probability of st = a at state θ = B, is
higher than pA, the unknown probability of st = a at state θ = A. That is, the individual
finds it possible (though unlikely) that a signal st = a can be considered as evidence in
favor of state B rather than A. This is because the individual is uncertain not only about
the informativeness of the signals but also about their direction.3

It may at first appear that individuals should always know whether a particular signal
value is evidence in favor of state A or state B. One might then argue that as an individ-
ual observes more and more a signals, he should not decrease his belief that the state
is A—that is, beliefs should be monotone in frequencies. For example, this reasoning
would suggest that if a candidate for an internal promotion has more publications in a
particular journal, then his chances for promotion should also be higher. Likewise, if we

1We thank a referee for conjecturing such a result and encouraging us to investigate it further.
2See Section 3 for an example. For previous arguments on whether game-theoretic models should be

formulated with all individuals having a common prior, see, for example, Aumann (1987, 1998) and Gul
(1998). Gul (1998), for instance, questions whether the common-prior assumption makes sense when there
is no ex ante stage.

3Note, however, that under {Fi
θ�m}, the probability that pB is higher than pA becomes vanishingly small

as m→ ∞.
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keep finding radioactive residues in various sites in a country, we should not decrease
our belief that the country has a covert nuclear weapons program.4

These intuitions are correct in fully identified models, but not in our more general
environment.5 This is a strength—not a shortcoming—of our model. We now argue that
these intuitions are in fact not as compelling as they first appear and rule out a range of
relevant empirical and theoretical possibilities.

Consider the internal promotion case first. The department has voted for promo-
tion and the case comes before the president of the university, who is from an unrelated
department. The chair of the department tells her that journal A publishes only excep-
tional contributions to the discipline, while journal B publishes minor contributions to
the candidate’s field. Suppose that the candidate has 3 publications in journal A and
3 publications in journal B, and the president approves the promotion. Now consider
the case where the candidate had 2 more publications in journal A. It is natural to sup-
pose that she would be even more enthusiastic about the case. Would she still be as
enthusiastic about the promotion if the candidate had 20 publications in journal A? 200
more publications? 2000 more publications? Clearly, as we increase the number of pub-
lications in journal A, the president will eventually start doubting the description that
journal A publishes only exceptional contributions and at some point will start putting
less weight on publications in journal A. Naturally, before seeing the candidate’s publi-
cation record, she would have attached a very small probability to seeing 2000 publica-
tions in journal A. But faced with such a promotion case, she would start questioning
her working hypothesis.

Similarly, finding nuclear residue in a site may be considered a strong evidence for a
covert nuclear weapons program. Finding residues in three different sites would prob-
ably be considered a smoking gun. But what if we find nuclear residues everywhere in
the country? We would presumably not conclude that there is a nuclear facility in every
building in the country, but start entertaining the hypothesis that the measurements are
wrong or they are responding to some other compound or to some specific feature of
the geography of the country.

1.4 A brief literature review

Blackwell and Dubins (1962) show that when two agents agree on zero-probability
events (i.e., their beliefs are absolutely continuous with respect to each other), asymp-
totically, they will make the same predictions about future frequencies of signals. It is
well understood that the absolute continuity assumption is crucial for such a merg-
ing of opinions and its relaxation can lead to a failure of merging; see, for example,
Freedman (1963, 1965), Diaconis and Freedman (1986), Miller and Sanchirico (1999),
and Stinchcombe (2005). For example, Freedman shows that when there are infinitely

4We thank an anonymous referee for suggesting these examples.
5In fact, the full-identification assumption is considerably stronger than monotonicity and hence the

full-identification assumption fails whenever asymptotic beliefs are non-monotone on some (possibly un-
likely) events. Theorem 3 below shows that our fragility results hold even when asymptotic beliefs are
monotone in signal frequencies (though naturally our results are not true under full identification).
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many signal values, an individual may put positive probability to the conditional sig-
nal distributions that are arbitrarily close to the true signal distribution in the product
topology, but his future predictions may diverge dramatically from those of another in-
dividual who knows the true signal distribution. This is because posterior beliefs may be
quite sensitive to the tail of the conditional signal distribution and the tails are negligi-
ble in the product topology. In Freedman’s example, the individual puts zero probability
on the true signal distribution. Similarly, a number of important theorems in statis-
tics, for example, Berk (1966), show that when individuals place zero probability on the
true data generating process, limiting posteriors will have their support on the set of all
identifiable values, but they may fail to converge to a limiting distribution.

In contrast to the above-mentioned papers, we do not question the absolute conti-
nuity assumption, as our full-support assumption implies absolute continuity. In par-
ticular, as in Blackwell and Dubins’ theorem, the individuals asymptotically agree on the
future frequency of signals. Indeed, our results rely on the fact that agreeing about fu-
ture frequencies is not the same as agreeing about the underlying payoff-relevant state,
because of the identification problem that arises in the presence of uncertainty.6 This
identification problem leads to different possible interpretations of the same signal se-
quence by individuals with different priors. In most economic situations, what is im-
portant is not future frequencies of signals but some payoff-relevant parameter. For
example, what is relevant for economists trying to evaluate a policy is not the frequency
of estimates on the effect of similar policies from other researchers, but the impact of
this specific policy when (and if) implemented. Similarly, in the asset trading example
discussed in Section 3, what is most relevant is not the frequency of information about
the dividend process, but the actual dividend that the asset will pay. Thus, many situa-
tions in which individuals need to learn about a parameter or state that will determine
their ultimate payoff as a function of their action falls within the realm of the analysis
here. Our main results show that even when this identification problem is negligible for
individual learning, its implications for asymptotic agreement may be significant.

Our paper is also related to recent independent work by Cripps et al. (2008), who
study the conditions under which there will be “common learning” by two agents ob-
serving correlated private signals. Cripps et al. focus on a model in which individuals
start with common priors and then learn from private signals under certainty (though
they note that their results could be extended to the case of non-common priors). They
show that individual learning ensures “approximate common knowledge” when the sig-
nal space is finite, but not necessarily when it is infinite. In contrast, we focus on the case
in which the agents start with heterogeneous priors and learn from public signals under
(negligible) uncertainty. Since all signals are public in our model, there is no difficulty in
achieving approximate common knowledge.7

In dynamic games, a similar mechanism precludes full learning: some subgames are
never visited along the equilibrium path and thus players do not learn the other players’

6In this respect, our paper is also related to Kurz (1994, 1996), who considers a situation in which agents
agree about long-run frequencies, but their beliefs fail to merge because of the nonstationarity of the world.

7Put differently, we ask whether a player thinks that the other player will learn, whereas Cripps et al. ask
whether a player i thinks that the other player j thinks that i thinks that j thinks that . . . a player will learn.
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and nature’s moves in those subgames (see for example Fudenberg and Levine 1993 and
Fudenberg and Kreps 1995). In that case, players may remain holding differing beliefs
about the other players’ and nature’s moves in those contingencies even after arbitrar-
ily long interactions. In particular, in games against nature, the players may disagree
about the consequences in counterfactual situations, and some superstitions may per-
sist (Fudenberg and Levine 2006). Note that, as in our paper, the main reason for lack
of learning and asymptotic agreement is the lack of identification: one cannot iden-
tify the strategies from the observable moves. We are not aware of any work on nearly
identifiable models within that literature.

In our next section, we introduce our general model. In Section 3, we illustrate the
asymptotic agreement in the standard model and its fragility using a binary example (as
briefly discussed above). Section 4 formally introduces our notion of discontinuity of
asymptotic agreement and presents our main results. In Section 5, using an asset trad-
ing example, we illustrate how the failure of asymptotic agreement may have significant
implications for game-theoretic and economic analysis. Section 6 concludes. In Ap-
pendix A, we present a general characterization of asymptotic learning and agreement
under full identification. Appendix B contains the proofs of all the results stated in the
paper.

2. Model

There are two individuals, denoted by i ∈ {1�2}. The individuals care about a state θ,
which comes from a finite set � with K ≥ 2 elements. The individuals cannot observe
the state, but they publicly observe a sequence of signals {st}nt=1, where st ∈ � for some
finite set � with L ≥ 2 elements. We designate θ ∈ � and σ ∈ � as a generic state and a
generic signal value, respectively. We write �(�) ⊂ [0�1]K and �(�) ⊂ [0�1]L for the sets
of all probability distributions on � and �, respectively. We endow �(�) and �(�) with
the supremum norm ‖ · ‖. Individual i assigns ex ante probability πi

θ > 0 to θ; we write
πi ≡ (πi

θ)θ∈� ∈ �(�) for the vector of prior beliefs. The individuals believe that, given
θ, the signals are exchangeable, i.e., they are independently and identically distributed
with an unknown distribution.8 That is, the probability of st = σ given θ is an unknown
number pθ�σ . Here, pθ�σ can be considered as the long-run frequency of σ when the
true state is θ. We write pθ ≡ (pθ�σ)σ∈� ∈ �(�). The key notation introduced in this
paragraph and later is summarized in Table 1.

Our main departure from the standard model is that we allow the individuals to be
uncertain about the signal frequency pθ. We denote the cumulative joint distribution
function of pθ according to individual i—namely, his subjective probability distribu-
tion—by Fi

θ. In the standard model, Fi
θ is degenerate (Dirac) and puts probability 1 at

some p̂i
θ. In contrast, for most of the analysis, we will impose the following assumption.

8See, for example, Billingsley (1995). If there were only one state, then our model would be identical to De
Finetti’s canonical model (see, for example, Savage 1954). In the context of this model, De Finetti’s theorem
provides a Bayesian foundation for classical probability theory by showing that exchangeability (i.e., invari-
ance under permutations of the order of signals) is equivalent to having an independent identical unknown
distribution and implies that posteriors converge to long-run frequencies. De Finetti’s decomposition of
probability distributions is extended by Jackson et al. (1999) to cover cases without exchangeability.
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Variable Meaning

θ ∈ � Unknown fundamental
s = {st} A sequence of signals observed
σ ∈ � A possible value for signal st
πi
θ Prior probability of θ according to i

φθ�n(s) Posterior probability of θ after observing {s1� 
 
 
 � sn}
φθ�∞(s) Asymptotic probability of θ
rσ�n(s) Empirical frequency of σ
ρσ(s) Empirical long-run frequency of σ
pθ�σ Unknown probability of σ under θ
Fi
θ, f iθ Distribution (c.d.f. and p.d.f.) of pθ�σ according to i

Ri
θ�θ′ = f iθ′/f iθ Likelihood ratio

Table 1. Key variables.

Assumption 1 (Full support for signal frequency). For each i and θ, Fi
θ has a continu-

ous, nonzero, and finite density f iθ over �(�).

The assumption implies that Fi
θ has a full support over the simplex �(�). Assump-

tion 1 is stronger than necessary for our results, but simplifies the exposition. In addi-
tion, throughout we assume that π1, π2, F1

θ , and F2
θ are known to both individuals.9

We consider infinite sequences s ≡ {st}∞t=1 of signals and write S for the set of all such
sequences. We write

φi
θ�n(s) ≡ Pri(θ|{st}nt=1)

for the posterior probability that the true state is θ given a sequence of signals {st}nt=1
under prior πi and subjective probability distribution Fi

θ. After observing {st}nt=1, i as-
signs probability φi

θ�n(s) to state θ. Since the sequence of signals, s, is generated by an
exchangeable process, the order of the signals does not matter for the posterior. It only
depends on

rσ�n(s) ≡ #{t ≤ n | st = σ}�
the number of times st = σ out of first n signals for each signal value σ ∈ �; we write
rn(s) ≡ (rσ�n(s))σ∈�.10 Let us write

S̄ ≡
{
s ∈ S

∣∣ lim
n→∞ rσ�n(s)/n exists for each σ ∈ �

}
9Since our purpose is to understand whether learning justifies the common-prior assumption, we do not

assume a common prior, allowing individuals to have differing beliefs even when the beliefs are commonly
known.

10Given the definition of rn(s), the probability distribution Pri on �× S is defined by setting

Pri(Eθ�s�n) ≡ πi
θ

∫ ∏
σ∈�

p
rσ�n(s)
θ�σ f iθ(pθ)dpθ

at each event Eθ�s�n = {(θ� s′) | s′t = st for each t ≤ n}, where s ≡ {st}∞t=1 and s′ ≡ {s′t}∞t=1.
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for the set of sequences under which the empirical frequency rσ�n(s)/n converges to
some long-run frequency and let us denote this long-run frequency of σ under s by

ρσ(s) ≡ lim
n→∞ rσ�n(s)/n


We denote the vector of long-run frequencies by ρ(s) ≡ (ρσ(s))σ∈� ∈ �(�). By the strong
law of large numbers, such a limit exists almost surely for both individuals, which im-
plies that Pri(s ∈ S̄) = 1 for i = 1�2. We will often state our results for all sample paths
s in S̄, which equivalently implies that these statements are true almost surely or with
probability 1. Now a straightforward application of the Bayes rule gives

φi
θ�n(s) = 1

1 + ∑
θ′ �=θ

πi
θ′

πi
θ

Pri(rn|θ′)
Pri(rn|θ)

� (1)

where Pri(rn|θ) is the probability of observing the signal st = σ exactly rσ�n times out of
n signals for each σ ∈ � with respect to the distribution Fi

θ.
The following lemma provides a useful formula for the asymptotic belief of indi-

vidual i, limn→∞ φi
θ�n(s), and introduces the concept of the asymptotic likelihood ratio.

Both the formula and the asymptotic likelihood ratio are used throughout the rest of the
paper.

Lemma 1. Suppose Assumption 1 holds. Then for all s ∈ S̄,

lim
n→∞φi

θ�n(s) = 1

1 + ∑
θ′ �=θ

πi
θ′

πi
θ

Ri
θ�θ′(ρ(s))

≡φi
θ�∞(ρ(s))� (2)

where

Ri
θ�θ′ ≡ f iθ′/f iθ (3)

is the asymptotic likelihood ratio for θ and θ′.

All proofs are given in the Appendix.
In (3), Ri

θ�θ′(ρ) is the asymptotic likelihood ratio of observing frequency vector ρ

when the true state is θ′ versus when it is θ. Lemma 1 states that, asymptotically, individ-
ual i uses these likelihood ratios and the Bayes rule to compute his asymptotic posterior
beliefs about θ. Notice that φi

θ�∞ and Ri
θ�θ′ are defined on the simplex �(�) of frequency

vectors. We write φi∞ ≡ (φθ�∞)θ∈�.

Remark 1. In any exchangeable model, the long-run frequency vector ρ(s) is a suffi-
cient statistic for the entire sample path s. Hence, after observing the entire s, a Bayesian
individual updates his belief to φi

θ�∞(ρ(s)) by conditioning on ρ(s) whenever ρ(s) has

positive ex ante probability (or positive density). In that case, asymptotic beliefs φi
θ�n(s)

also converge to φi
θ�∞(ρ(s)), as established by Lemma 1. Hence, under the full-support

assumption, asymptotic analysis in our model is equivalent to the analysis of a simpler
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model in which the individuals observe a single lower-dimensional signal ρ(s) ∈ �(�).
This equivalence leads to elementary analyses in most of our proofs.11

For us, the following two concepts are of interest.

(i) Asymptotic learning : Pri(φi
θ�∞ = 1|θ)= 1 for each θ and i = 1�2.

(ii) Asymptotic agreement : Pri(φ1∞ =φ2∞) = 1 for i = 1�2.

Notice that both asymptotic learning and agreement are defined in terms of the ex
ante probability assessments of the two individuals.12 Therefore, asymptotic learning
implies that an individual believes that he or she will ultimately learn the truth, while
asymptotic agreement implies that both individuals believe that their assessments will
eventually converge.13

3. A binary example

In this section, we illustrate the main idea of the paper using the following simple exam-
ple. We also discuss the problematic assumptions of the standard models that motivate
our alternative full-support assumption. We take � = {A�B} and �= {a�b}, so that there
are two states and the signals are binary.

3.1 Standard model without uncertainty and its problematic assumptions

We first consider an instance of the standard model, where it is commonly known that
pA�a = pB�b = p̂ for some p̂ ∈ ( 1

2 �1]. Now suppose that ra�n out of the first n signals
are a. The likelihood of this event is p̂ra�n(1 − p̂)n−ra�n under θ = A and p̂n−ra�n(1 − p̂)ra�n

under B. The relative likelihood ratio is

R(ra�n�n)=
(
p̂ra�n/n(1 − p̂)1−ra�n/n

p̂1−ra�n/n(1 − p̂)ra�n/n

)n


 (4)

11In contrast, standard models preclude most long-run frequencies as zero-probability events. At those
frequencies, the posterior belief φi

θ�∞(ρ(s)) is not well defined, and the Bayes’ rule is discontinuous. In that
case, the asymptotic beliefs are instead determined by sampling variation, requiring a more involved anal-
ysis, which we discuss in the context of our illustrative binary example in Section 3.1 and more generally
in Appendix A. Finally, we remark here that the observation that there is an asymptotic sufficient statistics
applies to a wide variety of regular statistical models, for example, the models that are LAN (local asymp-
totically normal). The notion of asymptotic sufficiency as well as of asymptotic optimality based on it has
been formalized by Le Cam’s theory of limits of statistical experiments; see, e.g., Van der Vaart (1998) for
a lucid treatment. Therefore, the insights developed here for the binary and multinomial models extend
naturally to such broader contexts.

12We formulate asymptotic learning and agreement in terms of each individual’s initial probability mea-
sure so as not to take a position on what the “objective” or “true” probability measure is. Under Assump-
tion 1, asymptotic learning and agreement occur if and only if the corresponding limits hold for almost all
long-run frequencies ρ(s) ∈ �(�) under the Lebesgue measure, which has also an “objective” meaning.

13In a strategic situation, the players may care about both θ and the future signal frequencies. In that
case, for asymptotic agreement, one may ask that both posteriors about θ and the future frequencies merge.
The two concepts are equivalent under the full-support assumption, since, in this case, the beliefs about
the future frequencies merge.
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Suppose that n → ∞ and ra�n/n → ρa for some ρa > 1
2 . Since ρa is more likely un-

der A than under B, the expression in the parentheses in (4) is greater than 1, and
R(ra�n�n)→ ∞. Hence, asymptotically, each individual assigns probability 1 to state A.
When the true state is A, ra�n/n → p̂. Therefore, as n→ ∞, both individuals assign prob-
ability 1 to the true state. Similarly, when the true state is B, ra�n/n converges to 1− p̂ < 1

2 ,
and since the expression in the parentheses is now less than 1, R(ra�n�n) → 0. In that
case, both individuals assign probability 1 to the true state B, asymptotically. Except
for the knife-edge case ρa = 1

2 , both individuals asymptotically assign probability 1 to
the same state. Therefore, in the standard model, we have both asymptotic learn-
ing (i.e., Pri(φi

θ�∞ = 1|θ) = 1 for each θ and i = 1�2) and asymptotic agreement (i.e.,

Pri(φ1∞ =φ2∞)= 1 for i = 1�2).
A simple intuition for this result is that the underlying state θ is fully identified from

the limiting frequencies (i.e., p̂ �= 1− p̂), so that both individuals can infer the underlying
state from the observation of the limiting frequencies of signals. However, there is more
to this result than this simple intuition. Each individual is sure that, at state θ, they will
be confronted with a limiting frequency of ρθ = p̂, in which case they will conclude that
the true state is θ. They are certain that they will not observe an asymptotic frequency
of ρa other than p̂ and 1 − p̂.

What happens if an individual observes a frequency ρa of a-signals different from p̂ and
1 − p̂ in a large sample of size n?

The answer to this question highlights why asymptotic agreement under the standard
model rests on problematic assumptions. Although the event in the question has
zero probability under the individual’s beliefs at the limit n = ∞, any frequency has
strictly positive probability for n < ∞ because of sampling variation. In particular,
the individual expects frequency ρa to occur with probabilities (p̂ρa(1 − p̂)1−ρa)n and
(p̂1−ρa(1 − p̂)ρa)n under states A and B, respectively, when the sample size is n. When
ρa > 1

2 , this event is infinitely more likely under θ = A than under θ = B in the sense
that (p̂ρa(1 − p̂)1−ρa)n/(p̂1−ρa(1 − p̂)ρa)n → ∞ as n → ∞. Consequently, he becomes
increasingly certain that the long-run frequency of a is p̂, which is distinct from ρa, and
assigns probability 1 to state θ = A. Crucially, the individual reaches this inference de-
spite the fact that as n → ∞, frequency ρa has zero probability under θ = A. The fact
that identification relies on inference based on such zero-probability events is a prob-
lematic aspect of the standard model. What is more, individual i never questions the
validity of his model even though the reality is increasingly inconsistent with this model
(since p̂ �= ρa �= 1 − p̂). As we discussed in the Introduction, in practice we expect indi-
viduals to revise their models and working hypotheses when faced with overwhelming
evidence inconsistent with their assumptions. Finally, individual i’s beliefs (at sample
path s) concerning future frequencies diverge from the actual empirical frequency. In
particular, we have

lim
n→∞ Pri(sn+1 = a|{st}t=n

t=1) �= ρa(s)

because limn→∞ Pri(sn+1 = a|{st}t=n
t=1) ∈ {p̂�1 − p̂} while ρa(s) /∈ {p̂�1 − p̂}. In contrast,

under the full-support assumption, we always have

lim
n→∞

(
Pri(sn+1 = σ |{st}t=n

t=1)
)
σ∈� = ρ(s) ∀s ∈ S̄�
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so that individuals’ beliefs about the future frequencies always converge to the empirical
frequency.14

This discussion suggests that the support restrictions on limiting frequencies in
the standard model lead to a range of problematic conclusions when individuals ob-
serve “surprising” frequencies (because individuals always ascribe these frequencies to
sampling variability). It also suggests that equating small probability events with zero-
probability events may have important consequences. To investigate these issues sys-
tematically, we focus here on the case in which the full-support assumption applies.

Clearly, under the full-support assumption, we cannot have full asymptotic learning:

Pri(φi
θ�∞ �= 1|θ)= 1
 (5)

Moreover, by Lemma 1, except for some knife-edge cases,15 the initial belief differences
are reflected in the asymptotic beliefs, and the individuals fail to reach an asymptotic
agreement almost surely:

Pri(φ1∞ �= φ2∞)= 1
 (6)

Nevertheless, asymptotic learning and agreement under the standard model may be
more robust than (5) and (6) appear to suggest. Under the standard model, individuals
expect to assign exactly probability 1 to the true state and the asymptotic disagreement
is exactly 0. When the idealized assumptions of the standard model are relaxed, these
conclusions may no longer hold. But this is simply because the individuals do not as-
sign exactly probability 1 to any state. This does not, however, rule out the possibility
that asymptotic learning and agreement results are robust in the sense that the amount
of asymptotic disagreement is small in the neighborhood of the standard models, e.g.,
when the amount of uncertainty about the conditional signal distributions is small. Our
next example shows that this is not necessarily true: in certain cases, there will be sub-
stantial asymptotic disagreement even if the amount of uncertainty is negligible and the
model looks like the standard one at first glance.

3.2 Large deviations from asymptotic agreement with small uncertainty

Now, we consider the case in which each individual faces a small amount of uncertainty
about the conditional signal distributions. The individuals’ beliefs about the conditional
distributions are slightly different. For some small ε�λ ∈ (0�1), each individual i thinks
that with probability 1 − ε, pA�a and pB�b are in the λ neighborhood of some p̂i, but with

14This claim can be readily proved following the same steps as in the proof of Lemma 3 in Appendix B.
Note also that, while the full-support assumption gets rid of the above discrepancy, the beliefs about the
future events may still differ from the observed data. In particular, by exchangeability, individuals do not
expect the dynamic patterns observed in the past to continue in the future.

15The exception is when the equality

∑
θ′ �=θ

π1
θ′

π1
θ

R1
θ�θ′(ρ(s)) =

∑
θ′ �=θ

π2
θ′

π2
θ

R2
θ�θ′(ρ(s))

holds for some θ.
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Figure 1. The three panels show, respectively, the approximate values of Ri
A�B , φi

A�∞, and

|φ1
A�∞ −φ2

A�∞| as ε→ 0.

probability ε, the signals are not informative. We will pay special attention to the limit
case ε → 0, λ → 0, and p̂i → p̂. In that case, each individual’s beliefs are approximately
the same as in the standard model discussed in the previous subsection.

Formally, for p̂i > 1
2(1 + λ) and λ < |p̂1 − p̂2|, we consider

f iθ(pθ) =
{
ε+ 1−ε

λ if pθ�θ ∈ (p̂i − 1
2λ� p̂

i + 1
2λ)

ε otherwise

for each θ and i. Here, pθ = (pθ�a�pθ�b), and pθ�θ is pA�a for θ = A and pB�b for θ = B.
Now, by (3), the asymptotic likelihood ratio is

Ri
A�B(ρ) =

⎧⎪⎨
⎪⎩

ελ
1−ε(1−λ) if ρa ∈Di

A ≡ (p̂i − 1
2λ� p̂

i + 1
2λ)

1−ε(1−λ)
ελ if ρa ∈Di

B ≡ (1 − p̂i − 1
2λ�1 − p̂i + 1

2λ)

1 otherwise.

(7)

This and other relevant functions are plotted in Figure 1 for the limit case ε → 0,
λ → 0. The likelihood ratio Ri

A�B(ρ) is 1 when ρais small, takes a very high value at

1 − p̂i, goes down to 1 afterward, becomes nearly zero around p̂i, and then jumps back
to 1. By Lemma 1, φi

A�∞(ρ) will also be non-monotone: when ρa is small, the signals

are not informative; thus φi
A�∞(ρ) is the same as the prior, πi

A. In contrast, around

ρa = 1 − p̂i, the signals become very informative, suggesting that the state is B; thus
φi
A�∞(ρ) ∼= 0. After this point, the signals become uninformative again and φi

A�∞(ρ)

goes back to πi
A. Around p̂i, the signals are again informative, but this time favoring

state A, so φi
A�∞(ρ) ∼= 1. Finally, signals again become uninformative and φi

A�∞(ρ) falls

back to πi
A.

Intuitively, when ρa(s) is around 1 − p̂i or p̂i, the individual assigns very high prob-
ability to the true state, but outside of this region, he sticks to his prior, concluding that
the signals are not informative.

The first important observation is that even though φi
A�∞ is equal to the prior for a

large range of limiting frequencies, as ε → 0 and λ → 0 each individual attaches prob-
ability 1 to the event that he will learn θ. This is because as ε → 0 and λ → 0, each
individual becomes convinced that the limiting frequencies will be close to either 1 − p̂i

or p̂i. Thus, there is approximate asymptotic learning in this environment.
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However, asymptotic learning is considerably weaker than asymptotic agreement.
Each individual also understands that since λ < |p̂1 − p̂2|, when the long-run frequency
is in a region where he learns that θ = A, the other individual will conclude that the
signals are uninformative and adhere to his prior belief. Consequently, he expects the
posterior beliefs of the other individual to be always far from his. Put differently, as ε→ 0
and λ → 0, each individual believes that he will learn the value of θ himself but that the
other individual will fail to learn. Therefore, each attaches probability 1 to the event that
they disagree. This can be seen from the third panel of Figure 1; at each sample path
in S̄, at least one of the individuals will fail to learn, and the difference between their
limiting posteriors will be uniformly higher than the “objective” bound

z̃ ≡ min{π1
A�π

2
A�π

1
B�π

2
B� |π1

A −π2
A|}
 (8)

When π1
A = 1

3 and π2
A = 2

3 , this bound is equal to 1
3 . In fact, the belief of each individ-

ual regarding potential disagreement can be greater than this; each individual believes
that he will learn but the other individual will fail to do so. Consequently, for each i,
Pri(|φ1

A�∞(ρ)−φ2
A�∞(ρ)| ≥ Z)≥ 1 − ε, where as ε→ 0,

Z → z ≡ min{π1
A�π

2
A�π

1
B�π

2
B}
 (9)

This “subjective” bound can be as high as 1
2 .

Clearly, we can pick p̂1 ∼= p̂2 ∼= p̂ and ε ∼= λ ∼= 0, so that each individual’s beliefs are
approximately the same as in the above instance of the standard model. Yet, our indi-
viduals are certain that their beliefs will remain far apart as they observe the public sig-
nals, while the individuals in the standard model are certain that their beliefs will merge
eventually.16

Note that the two models above differ mainly on how they treat the “small probabil-
ity” events. The standard model in Section 3.1 reduces all such events to zero-probability
events and uses the limits of likelihood ratio due to sampling variation under the re-
duced model to assign degenerate probabilities on states whenever such event occurs.
In contrast, the model in Section 3.2 assigns small prior probability on those events and
uses the likelihood ratio according to these prior beliefs to assign posterior probabilities
on the states when such events occur. (Even though there are clearly more degrees of
freedom in choosing small prior probabilities, our qualitative results are independent of
these probabilities.) Our main concern in this paper is to investigate when the asymp-
totic agreement property in the standard model survives under this type of small prior
probabilities.

4. Fragility of asymptotic agreement—Main results

In this section, we turn to our general model and investigate whether as the amount of
uncertainty about the interpretation of the signals disappears, the amount of asymp-
totic disagreement vanishes continuously. We first show that this is not the case: as in

16Note that both heterogeneous beliefs about the interpretation of signals, i.e., p̂1 �= p̂2, and uncertainty,
i.e., ε �= 0 �= λ, are important for this discontinuity.
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the binary example, one can slightly perturb a standard model of learning under cer-
tainty and obtain a model in which there is a substantial amount of asymptotic dis-
agreement. We establish such a discontinuity for every model with certainty, includ-
ing the canonical model of learning under certainty, where both individuals share the
same beliefs regarding the conditional signal distributions. We then restrict our pertur-
bations by imposing a uniform convergence assumption. Within this class, we charac-
terize the perturbations under which the amount of asymptotic disagreement vanishes
continuously.

We consider an arbitrary sequence {Fi
θ�m}m∈N�i∈{1�2}�θ∈� of subjective probability dis-

tributions about the signal frequency that converge in weak topology to a Dirac distri-
bution δpi

θ
for each (i� θ) as m → ∞, where δpi

θ
puts probability 1 on pi

θ ∈ �(�). (We

will simply say that {Fi
θ�m} converges to δpi

θ
.) We write Prim for the ex ante probability

under (Fi
θ�m)θ∈�, φi

θ�∞�m for the asymptotic posterior belief that the true state is θ under

(Fi
θ�m)θ∈�, and Ri

θ�θ′�m = f iθ′�m/f
i
θ�m for the long-run likelihood ratio.

In the sequel, we focus on the case that there is asymptotic learning and asymptotic
agreement under certainty for δpi

θ
(as in Section 3.1).17 As m → ∞, uncertainty about

the interpretation of the signals disappears and we converge to a model with asymp-
totic learning and asymptotic agreement. We check whether these asymptotic learning
and asymptotic agreement properties are continuous at certainty in the sense that they
hold approximately for large m. We first observe that asymptotic learning is indeed con-
tinuous at certainty.

Theorem 1 (Continuity of asymptotic learning). Consider any {Fi
θ�m} converging to δpi

θ

with pi
θ �= pi

θ′ for all θ �= θ′ and i. For any ε > 0 and (θ� i),

lim
m→∞ Prim(φ

i
θ�∞�m > 1 − ε|θ)= 1.

Equivalently, for any (ε�θ�θ′� i) with ε > 0 and θ �= θ′, limm→∞ Prim(R
i
θ�θ′m < ε|θ)= 1.

Here, the condition that pi
θ �= pi

θ′ for all θ �= θ′ ensures that there is asymptotic agree-
ment under δpi

θ
. Theorem 1 states that as {Fi

θ�m} converges to δpi
θ
, each individual

becomes increasingly convinced that he will learn the true state. Equivalently, when
a model of learning under certainty is perturbed, deviations from full learning will be
small and each individual will attach a probability arbitrarily close to 1 that he will even-
tually learn the payoff-relevant state variable θ. Hence, asymptotic learning in the stan-
dard models is robust.

We next define the continuity of asymptotic agreement at certainty and show that, in
contrast to asymptotic learning, asymptotic agreement is not robust. That is, there may
remain a substantial amount of asymptotic disagreement along the way (for large m).

17We assume asymptotic learning under certainty only in Theorems 1 and 4, and assume asymptotic
agreement under certainty only in Theorem 5, where the assumption is explicitly stated.
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Definition 1. For any given family {Fi
θ�m}, we say that asymptotic agreement is contin-

uous at certainty under {Fi
θ�m} if for all ε > 0 and for each i = 1�2,

lim
m→∞ Prim(‖φ1∞�m −φ2∞�m‖< ε)= 1


Continuity at certainty requires that as the family of subjective probability distri-
butions converge to a Dirac distribution, each individual becomes increasingly certain
that asymptotic disagreement will be arbitrarily small. Hence, asymptotic agreement is
discontinuous at certainty under {Fi

θ�m} if there exists ε > 0 such that

lim
m→∞ Prim(|φ1∞�m −φ2∞�m| > ε) > 0

for i = 1�2. We will next define a stronger notion of discontinuity.

Definition 2. We say that asymptotic agreement is strongly discontinuous at certainty
under {Fi

θ�m} if there exists ε > 0 such that for each i = 1�2,

lim
m→∞ Prim(‖φ1∞�m −φ2∞�m‖> ε)= 1


Strong discontinuity requires that even as we approach the world of learning un-
der certainty, asymptotic agreement will fail with probability approximately equal to 1
according to both individuals. Finally, we introduce an even a stronger notion of
discontinuity.

Definition 3. We say that asymptotic agreement is almost-surely discontinuous at cer-
tainty under {Fi

θ�m} if there exist ε > 0 and m̄ <∞ such that for all m> m̄ and ρ ∈ �(�),

‖φ1∞�m(ρ)−φ2∞�m(ρ)‖ > ε


Almost-sure discontinuity requires that on every sample path s ∈ S̄, with well de-
fined long-run frequency ρ(s), asymptotic beliefs will be bounded away from each other.
Hence, almost surely, there will be a significant asymptotic disagreement. In contrast,
strong discontinuity only requires that individuals assign high probabilities to those
sample paths. Therefore, almost-sure discontinuity implies strong discontinuity, and
strong discontinuity implies discontinuity.

Remark 2. As we explain in Remark 1, φi
θ�∞(s) is the posterior probability individual i

assigns to state θ after observing s. One could then equivalently define the continuity of
(asymptotic) learning by the condition that

Prim
({
(θ� s) : d(φi

m(s)�δθ) > ε
}) → 0

for all ε > 0, where φi
m(s) is the posterior belief about θ after observing s under the prob-

ability distribution Prim about (θ� s), δθ is the Dirac distribution, and d is a metric on
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probability distributions. The continuity of asymptotic learning according to this defi-
nition also follows readily from Theorem 1. The continuity of (asymptotic) agreement
requires quite a bit more than this, however:

Prim
({
(θ� s) : d(φi

m(s)�φ
j
m(s)) > ε

}) → 0

for all ε > 0. Under the continuity of (asymptotic) learning, it requires an additional
condition:

Prim
({
(θ� s) : d(φj

m(s)�δθ) > ε
}) → 0

for all ε > 0. Thus it is also necessary that under nearby models, individuals should
be confident that other individuals will also learn. Such confidence in other individu-
als’ learning is highly fragile, as we demonstrate next, underpinning our results on the
discontinuity of (asymptotic) agreement.

4.1 Discontinuity of asymptotic agreement

Theorem 2 (Strong discontinuity). For each (p1�p2) ∈ �(�)2K , there exists a family
{Fi

θ�m} converging to δpi
θ

under which asymptotic agreement is strongly discontinuous at

certainty. If π1 �= π2, then asymptotic agreement is almost-surely discontinuous under
{Fi

θ�m}.

That is, for every model with certainty, one can introduce a vanishingly small uncer-
tainty in such a way that the individuals’ asymptotic beliefs remain substantially differ-
ent from each other at almost all sample paths. Therefore, the asymptotic agreement
results are always fragile. The proof is based on a perturbation as in the binary example
introduced in Section 3.

Example 1 (Discontinuity of asymptotic agreement). In Section 3.2, for each m, take
ε = λ = ε̄/m, p̂1 = p̂ + λ, and p̂2 = p̂ − λ, where ε̄ is such that φi

B�∞(ρ) < 1
2π

j
B for

ρa ∈Di
A and φi

A�∞(ρ) < 1
2π

j
A for ρa ∈Di

B whenever ε= λ ≤ ε̄. (Recall from (7) that Di
A ≡

(p̂i − 1
2λ� p̂

i + 1
2λ) and Di

B ≡ (1 − p̂i − 1
2λ�1 − p̂i + 1

2λ).) Such ε̄ exists (by asymptotic
learning of i). By construction, each Fi

θ�m converges to the beliefs in the standard model,

and |p̂1 − p̂2| > λ. To see strong discontinuity, consider the bound Z̄ = 1
2z > 0 with z as

in (9). By the choice of ε̄, |φ1
A�∞�m(ρ) − φ2

A�∞�m(ρ)| > Z̄ whenever ρa ∈ Di
A ∪ Di

B. But

Prim(ρa(s) ∈Di
A ∪Di

B) = 1 − ε(1 − λ), which goes to 1 as m→ ∞. Therefore,

lim
m→∞ Prim(|φ1

A�∞�m −φ2
A�∞�m| > Z̄) = 1


This establishes that agreement is strongly discontinuous under {Fi
θ�m}.

To show almost-sure discontinuity, consider the bound Z̃ = 1
2 z̃, which is positive

when π1 �= π2, where z̃ is as defined in (8). Clearly, |φ1
A�∞�m(ρ) − φ2

A�∞�m(ρ)| > Z̄ ≥ Z̃

when ρa ∈Di
A ∪Di

B, and |φ1
A�∞�m(ρ)−φ2

A�∞�m(ρ)| = |π1
A −π2

A| > Z̃ when ρa /∈Di
A ∪Di

B.

That is, at each frequency, the asymptotic disagreement exceeds Z̃, showing that agree-
ment is almost-surely discontinuous under {Fi

θ�m}. ♦
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In the binary example (and in the proof of Theorem 2), the likelihood ratio
Ri
θ�θ′�m(ρ(s)) and the asymptotic beliefs φi

θ�∞�m(ρ(s)) are non-monotone in the fre-
quency ρ(s). This is a natural outcome of uncertainty on conditional signal distribu-
tions (see the discussion in the Introduction and Figure 2). In the binary example, when
Ri
θ�θ′�m is monotone and the amount of uncertainty is small, at each state, one of the in-

dividuals assigns high probability that both of them will learn the true state and conse-
quently asymptotic disagreement will be small. Nevertheless, asymptotic agreement is
still discontinuous at uncertainty when we impose the monotone likelihood ratio prop-
erty. This is shown in the next theorem.

Theorem 3 (Discontinuity under monotonicity). Take � = {A�B} and � = {a�b}. Take
any π1

A�π
2
B ∈ (0�1), and for each i ∈ {1�2}, take any probability vectors p̂i

A = (p̂i
A�a�

1 − p̂i
A�a) and p̂i

B = (1 − p̂i
B�b� p̂

i
B�b) with p̂i

A�a > 1
2 and p̂i

B�b > 1
2 . There exist a family

{Fi
θ�m} such that the following statements hold:

(i) The variable Fi
θ�m converges to δp̂i

θ
for each θ and i.

(ii) The likelihood ratio Ri
A�B�m(ρa�1 − ρa) is nonincreasing in ρa for each i and m.

(iii) Agreement is discontinuous at certainty under {Fi
θ�m}.

The monotonicity of the likelihood ratio has weakened the conclusion of Theorem 2.
Now, asymptotic agreement is discontinuous at certainty, but it is not almost-surely or
strongly discontinuous.

In the proof of Theorem 2, the family {Fi
θ�m} leading to the discontinuity of asymp-

totic agreement induces discontinuous likelihood ratios. This is not important for the
results (except for almost-sure discontinuity) because smooth approximations to Fi

θ�m

would ensure continuity of the likelihood ratios. More importantly, the likelihood ra-
tio Ri

A�B�m converges pointwise to a continuous function (i.e., limmRi
A�B�m(ρ) = 1 for

each ρ), but this convergence is not uniform. The failure of uniform convergence is
crucial for the stark discontinuity results above, as we establish next.

4.2 A characterization of continuity with uniform convergence

We now assume that the likelihood ratio function Ri
θ�θ′�m uniformly converges to a (con-

tinuous) function in the relevant regions and we characterize the perturbations under
which the asymptotic agreement is continuous.

Let Ri
θ�θ′�∞(ρ) = limm→∞ Ri

θ�θ′�m(ρ) be the pointwise limit of Ri
θ�θ′�m(ρ) in the ex-

tended reals. It must be emphasized that the limiting asymptotic likelihood ratio,
Ri
θ�θ′�∞, is distinct from the asymptotic likelihood ratio in the limiting model. For ex-

ample, in Example 1, Ri
θ�θ′�∞ is identically 1. In contrast, the limiting model specifies

that each individual i is certain that pθ�θ = p̂. Consequently, in the limiting model, the
asymptotic likelihood ratio is 0 around ρa = p̂ and is ∞ around ρa = 1 − p̂. Under uni-
form convergence, our next theorem establishes that whether asymptotic agreement
holds is tied to the value of Ri

θ�θ′�∞ at the limiting frequencies, and it has no connection
to the likelihood ratio in the limiting model:
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Theorem 4 (Characterization under uniform convergence). Under Assumption 1, con-
sider any {Fi

θ�m} converging to δpi
θ
, where pi

θ �= pi
θ′ for all distinct θ, θ′, and (m� i). Assume

that for each (θ�θ′� i� j), there exists an open neighborhood V i
θ of pi

θ on which Ri
θ�θ′�m con-

verges uniformly to Ri
θ�θ′�∞. Then the following statements are true.

(i) Asymptotic agreement is continuous at certainty under {Fi
θ�m} if and only if

R
j
θ�θ′�∞(pi

θ)= 0 ∀i �= j� θ �= θ′


(ii) If Rj
θ�θ′�∞(pi

θ) �= 0 for all i �= j and θ �= θ′, then asymptotic agreement is strongly

discontinuous at certainty under {Fi
θ�m}.

The characterization establishes that whether asymptotic agreement is continuous
at certainty depends on whether the limiting asymptotic likelihood ratio for states θ and
θ′ according to j, Rj

θ�θ′�∞, is equal to 0 at the frequency pi
θ that will be realized under state

θ according to the limiting model of i. The idea here is intuitive. Individual i is almost
certain that if the state is θ, then the realized frequency will be around pi

θ and he will
assign nearly probability 1 to θ. For the other individual j to agree with him, she must
also assign nearly probability 1 to θ at those frequencies, which requires that her likeli-
hood ratio, Rj

θ�θ′�m, is nearly 0 at those frequencies. But these ratios are all approximately

equal to R
j
θ�θ′�∞(pi

θ) when R
j
θ�θ′�m converges uniformly.

In Theorem 4, the uniform convergence assumption is not superfluous for either
direction of the characterization, as the next counterexample shows.

Example 2 (Counterexample to necessity). Without uniform convergence, there may
be asymptotic agreement even if Rj

θ�θ′�∞ �= 0. In the binary example from Section 3, sup-
pose instead that

f iθ�m(p) =
{

1/m+m(1 − 1/m) if p ∈ (p̂m − 1/(2m)� p̂m + 1/(2m))

1/m otherwise,

where p̂m = 3
4 − 1/m. The limiting asymptotic likelihood ratio, Rj

θ�θ′�∞, is identically 1.

Nevertheless, agreement is continuous under {Fi
θ�m} because the individuals have the

same model of learning.
(Counterexample to sufficiency). Without uniform convergence, asymptotic agree-

ment may fail even if Rj
θ�θ′�∞ = 0. Consider the variation of the binary example,

f iθ�m(pθ) =
⎧⎨
⎩
xm if pθ�θ ∈ (p̂i

m − 1/m� p̂m + 1/m)

1/m if pθ�θ ∈ [ 1
2 �1] \ (p̂i

m − 7/m� p̂m + 7/m)

1/m2 otherwise

for large m, where p̂1
m = 3

4 + 14/m, p̂2
m = 3

4 + 18/m, and xm is such that f iθ�m is a density

function. One can check that Rj
θ�θ′�∞(ρ) = 0 whenever ρθ > 1

2 . Nevertheless, agreement

is still strongly discontinuous under {Fi
θ�m}. ♦
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Theorem 4 and the counterexamples above show that uniform convergence of like-
lihood ratios is what ties continuity of asymptotic agreement to the primitives of the
model. Under such a strong continuity concept, we have continuity if and only if the
limit of likelihood ratios is zero at the limiting frequencies. It turns out that this condi-
tion is closely related to the tail properties of the underlying distributions—as we illus-
trate next in a canonical example.

4.3 A canonical example

As in the binary example, we take � = {A�B} and � = {a�b}. We consider a class of
“symmetric” families {Fi

θ�m} that converge to the Dirac distribution δpi
θ
, where pi

A =
(p̂i�1 − p̂i) and pi

B = (1 − p̂i� p̂i) for some p̂i ∈ ( 1
2 �1). The family is parameterized by a

determining density function f : R → R that is strictly positive, symmetric around zero,
and monotone in the tails. The subjective density function f iθ�m is then induced by f and

the transformation x �→ (x− p̂i)/m. That is,

f iθ�m(ρ) = ci(m)f (m(ρθ − p̂i))�

where ci(m) ≡ 1/
∫ 1

0 f (m(ρθ−p̂i))dρθ is a correction factor to ensure that f iθ�m is a proper

probability density function (p.d.f.) on �(�). Here, the mapping x �→ (x − p̂i)/m scales
down the real line around p̂i by the factor 1/m, scaling down the uncertainty about pθ

by 1/m. As m → ∞, the uncertainty vanishes and Fi
θ�m converges to δpi

θ
. Note that this

model corresponds to the usual structure with small additive noise,

pθ�θ = p̂i +η/m�

where the noise η has density f . We adjust the distribution f iθ�m so that pθ�θ remains
within [0�1].

When p̂1 = p̂2, the individuals have the same subjective densities, leading trivially to
asymptotic agreement. To analyze the continuity of asymptotic agreement at certainty,
we will assume p̂1 �= p̂2. Define x̂≡ p̂1 + p̂2 − 1 > |p̂1 − p̂2| ≡ ŷ > 0.

The relevant asymptotic likelihood ratios are all equal to

R
j
θ�θ′�m(p

i
θ)= f (m(p̂1 + p̂2 − 1))

f (m|p̂1 − p̂2|) = f (mx̂)

f (mŷ)



Hence, under the uniform convergence assumption, whether asymptotic agreement is
continuous at certainty under {Fi

θ�m} depends on whether

lim
m→∞

f (mx̂)

f (mŷ)
= 0


This is a familiar condition in mathematical statistics. Whether it is satisfied depends on
whether f has rapidly varying (exponential) or regularly varying (polynomial) tails.
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Definition 4. A density function f has regularly varying tails if

lim
m→∞

f (mx)

f (m)
=H(x) ∈R ∀x > 0


The condition that H(x) ∈ R is relatively weak, but nonetheless has important im-
plications. In particular, it implies that H(x) ≡ x−α for α ∈ (0�∞).18 Moreover, Seneta
(1976) shows that the convergence in Definition 4 is uniform on any compact set. There-
fore, if f has regularly varying tails, then R

j
θ�θ′�m converges uniformly to R

j
θ�θ′�∞, where

R
j
θ�θ′�∞(pi

θ)= (x̂/ŷ)−α > 0

for some α ∈ (0�∞). Our characterization then shows that asymptotic agreement is
strongly discontinuous at certainty under {Fi

θ�m}. Many common distributions, includ-
ing the Pareto and t-distributions, have regularly varying densities.

Definition 5. A density function f has rapidly varying tails if for every x > 0,

lim
m→∞

f (mx)

f (m)
= x−∞ ≡

⎧⎨
⎩

0 if x > 1
1 if x = 1
∞ if x < 1.

Once again, the convergence is uniform on compact intervals that exclude x = 1 (as
in our case), and hence each R

j
θ�θ′�m converges uniformly to R

j
θ�θ′�∞, where

R
j
θ�θ′�∞(pi

θ) = (x̂/ŷ)−∞ = 0


Our characterization then shows that if f has rapidly varying tails, then agreement is
continuous under {Fi

θ�m}. Examples of densities with rapidly varying tails include the
exponential, the log-normal, and the normal densities.

Therefore, whether there is asymptotic agreement depends on the tails:

(i) If f has regularly varying tails, then agreement is continuous at certainty under
{Fi

θ�m}.

(ii) If f has rapidly varying tails, then agreement is strongly discontinuous at certainty
under {Fi

θ�m}.

The intuition for these results is as follows. The continuity of agreement is deter-
mined by whether Rj

θ�θ′�m(p
i
θ)

∼= 0. That is, whether i thinks that the frequency that will

be realized at state θ (namely pi
θ) will convince the other individual j, too, that the state

is θ. Now, since ŷ = |p̂i − p̂j| < |p̂i − (1 − p̂j)| = x̂, j also considers frequency pi
θ as

an evidence for state θ. For large m, the strength of this evidence depends on the tail
of f . Rapidly varying tails are increasingly informative. Any difference between x̂ and
ŷ is magnified as we go to the tail frequencies (as m increases). Hence, as m → ∞,

18See, for example, de Haan (1970).
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Figure 2. The limit limn→∞ φi
n(s) for Pareto distribution as a function of ρ(s) (for α = 2, p̂i = 3

4 ).

j infers from the frequency pi
θ that the state is θ (i.e., R

j
θ�θ′�∞(pi

θ) = 0). In contrast,
informativeness remains nearly constant on regularly varying tails. Hence, increas-
ing m does not make the frequency pi

θ correspond to “stronger evidence”; as a result,

R
j
θ�θ′�∞(pi

θ) remains around (x̂/ŷ)−α, bounded away from 0. Even in the limit m → ∞,
j assigns a significant probability to the other state, leading to a significant asymptotic
disagreement.

To illustrate the nature of asymptotic disagreement under regularly varying tails fur-
ther, consider the Pareto distribution with some α> 0. This is particularly relevant, since
all distributions with regularly varying tails behave similarly to the Pareto distribution
for large m. For simplicity, suppose π1

A = π2
A = 1

2 , so that there is no initial disagreement.
The likelihood ratio is

Ri
θ�θ′�m(ρ(s)) =

(
ρθ(s)+ p̂i − 1
ρθ(s)− p̂i

)−α

�

and the asymptotic probability that the true state is θ is

φi
θ�∞�m(ρ(s)) = (ρθ(s)− p̂i)−α

(ρθ(s)− p̂i)−α + (ρθ(s)+ p̂i − 1)−α

for all m. As illustrated in Figure 2, in this case, φi
θ�∞�m is not monotone. To see the

magnitude of asymptotic disagreement, consider ρθ(s) ∼= p̂i. In that case, φi
θ�∞�m(ρ(s))

is approximately 1, and φ
j
θ�∞�m(ρ(s)) is approximately ŷ−α/(x̂−α + ŷ−α). Hence, both

individuals believe that the difference between their asymptotic posteriors will be

|φ1
θ�∞�m −φ2

θ�∞�m| ∼= x̂−α

x̂−α + ŷ−α



This asymptotic difference is increasing with the difference ŷ ≡ |p̂1 − p̂2|, which corre-
sponds to the difference in the individuals’ views on which frequencies of signals are
most likely. It is also clear from this expression that this asymptotic difference will con-
verge to zero as ŷ → 0 (i.e., as p̂1 → p̂2).19

19The working paper version shows that in this canonical example, asymptotic disagreement will be
small for large m whenever ŷ is small.
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The dichotomy established here is quite intuitive. The fat-tailed regularly varying
distributions often naturally arise from thin-tailed rapidly varying distributions when
there is uncertainty about the latter distribution. For example, the t-distribution arises
from the normal distribution with uncertainty about variance. When individuals are
sure about their models (with thin tails), they use the data to resolve the uncertainty
about θ. This leads to monotone beliefs and asymptotic agreement. When they face
uncertainty about the model as well (with fat tails), they use the data to resolve both
modeling uncertainty and the uncertainty about θ. This leads to non-monotone beliefs
and asymptotic disagreement.

4.4 Robustness of agreement in the medium run

We have so far established that asymptotic agreement in standard models is fragile in
the sense that there may be substantial asymptotic disagreement when one introduces
a small amount of uncertainty. In the latter model, the amount of disagreement even-
tually exceeds a predetermined level, casting doubt on the notion that beliefs of differ-
ent individuals become eventually similar as they observe the same public information.
Nevertheless, it is possible that even in the model with divergent asymptotic beliefs, the
individuals’ beliefs may be quite similar for a long while before they eventually diverge.
Then one may be able to use the common-prior assumption as an approximation in the
medium run, after a sufficient amount of learning, but before beliefs eventually diverge.
We will now show that this is indeed the case whenever there is asymptotic agreement
in the limiting standard model. In other words, medium-run agreement is continuous
at certainty. To state this result, let Ei

m denote the expectation operator under Prim, and
let δpi

θ
be the Dirac measure that puts probability 1 on pi

θ.

Theorem 5 (Continuity of medium-run agreement). Let (p1�p2) ∈ (�(�)�)2 be such
that there is asymptotic agreement under (δpi

θ
)θ∈��i∈{1�2} (e.g., p1 = p2 and pi

θ �= pi
θ′ for

all distinct θ and θ′). Let {Fi
θ�m} be any family converging to δpi

θ
. Then, for every ε > 0 and

N <∞, there exist n̄ < ∞ and m̄ <∞ such that

Prim(‖φ1
n�m −φ2

n�m‖> ε) < ε (∀m> m̄�∀n ∈ {n̄� n̄+ 1� 
 
 
 � n̄+N})


Equivalently, for every ε > 0 and N <∞, there exist n̄ < ∞ and m̄ <∞ such that

Ei
m[‖φ1

n�m −φ2
n�m‖] < ε (∀m> m̄�∀n ∈ {n̄� n̄+ 1� 
 
 
 � n̄+N})


Imagine two individuals who face a small amount of uncertainty about the condi-
tional signal distributions, but their beliefs are similar to those in a standard model.
A significant amount of belief differences may remain early in the process because it
takes time to reduce the initial belief differences. Their beliefs may also eventually di-
verge as in the binary example. Despite this, Theorem 5 establishes that in between
these two ends, their beliefs will remain arbitrarily close to each other for an arbitrarily
long period of time, provided that the amount of uncertainty is sufficiently small.



Theoretical Economics 11 (2016) Fragility of asymptotic agreement 211

Figure 3. Ex ante expected disagreement in the binary example of Section 3.2 for ε= λ = 1/m.

The idea of the proof is simple. First, in the standard model, the expected disagree-
ment between the individuals’ beliefs vanishes as n → ∞, so that it becomes less than
1
2ε when n exceeds some n̄. Moreover, for a fixed n, since the asymptotic beliefs are
continuous and bounded, as m → ∞, the expected disagreement in the model with un-
certainty converges to the one under the standard model, so that it becomes within an
1
2ε neighborhood of the latter difference when m exceeds some m̄n. Hence, the expected
disagreement (in both models) will be less than ε whenever m ≥ m̄n and n ≥ n̄. There-
fore, when m ≥ maxn̄≤n≤n̄+N m̄n, the expected amount of disagreement will be less than
ε for each n in between n̄ and n̄+N .

As n grows, in the standard model, the expected disagreement diminishes and van-
ishes eventually. In a nearby model with small uncertainty, the expected difference also
diminishes and becomes very small for a long while (because it remains close to the one
in the standard model), but it may eventually grow larger and become substantial. In
a sense, small differences between the two models build up and lead to a substantial
difference eventually as the individuals receive more and more information.

For an illustration, consider the binary example of Section 3.2 for ε = λ = 1/m. Take
π1
A = 2

3 and π2
A = 1

3 as the prior beliefs. In Figure 3, we plot the ex ante expected value
of the disagreement after n observations as a function of m and n. (The value on the
contour indicates the expected disagreement along the contour.) For any fixed m, as the
individuals observe more signals, the expected disagreement decreases first and starts
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increasing after a while, eventually approaching 5
9 . As m increases (and uncertainty de-

creases), it takes longer for the asymptotic effect to take over, allowing the expected
disagreement to decrease to lower values and stay low for longer before increasing.
Theorem 5 shows that this period becomes arbitrarily long as m → ∞. Remarkably,
however, even when m is around 1000, so that the individuals know probabilities up
to the third digit, the expected disagreement starts growing rapidly only after 30 obser-
vations or so.

5. A model of asset trading

Failure of asymptotic agreement may have major implications in a game-theoretic anal-
ysis. In this section, we illustrate this with a simple asset trading example within the
framework of the binary example in Section 3. There are three dates, τ = 0�1�2, two
players, and an asset that yields a dividend only at date 2. The asset pays 1 if the state
is A and 0 if the state is B. Player 2 owns the asset, but player 1 would like to buy it be-
cause he is more optimistic: π1

A > π2
A. Between the dates τ = 0 and τ = 1, the players

observe a sequence s ≡ {st}∞t=1 of signals. Player 1 has all the bargaining power: at each
date, player 1 makes a take-it-or-leave-it price offer Qτ , and trade occurs at price Qτ if
player 2 accepts the offer. We are interested in the subgame-perfect equilibrium of this
game.

Let us start with the standard (learning) model in Section 3.1. At τ = 1, after ob-
serving s, except for the knife-edge case, the individuals have the same belief about θ,
and hence they are indifferent toward trading the asset (at price Q1 = φ1

A�∞(ρ(s)) =
φ2
A�∞(ρ(s))). In particular, at τ = 0, both individuals believe that the price at τ = 1 will be

1 if the state is A and 0 if the state is B, leaving both players indifferent. Hence, if trade
does not occur at τ = 0, the continuation value of player 1 is 0, and the continuation
value of player 2 is π2

A. If they trade at price Q0, then the continuation value of players 1
and 2 will be π1

A −Q0 and Q0, respectively. Thus at date 0, player 2 will accept an offer if
and only if Q0 ≥ π2

A. Since π1
A >π2

A, player 1 offers Q0 = π2
0 at date τ = 0 and trade takes

place. Therefore, in any subgame-perfect equilibrium, there is immediate trade at τ = 0.
We next turn to the model with small uncertainty, discussed in Section 3.2. In par-

ticular, suppose that in terms of the example there we have ε ∼= λ ∼= 0. We will then show
that trade is delayed in equilibrium. Now, at date 1, if ρa(s) ∈ D1

A ≡ (p̂1 − 1
2λ� p̂

1 + 1
2λ),

then the value of the asset for player 2 is φ2
A�∞(ρ(s)) = π2

A, and the value of the as-
set for player 1 is approximately 1. Hence, at such ρ(s), player 1 will buy the asset
from player 2 at price Q1(ρ(s)) = π2

A, enjoying gains from trade equal to 1 − π2
A.

Alternatively, if ρa(s) ∈ D1
B or ρa(s) ∈ D2

A, there will be no trade at date 1. For exam-
ple, if ρa(s) ∈D1

B, player 2 assigns probability π2
A to state A, accepting an offer Q1 only if

Q1 ≥ π2
A. But since player 1 assigns nearly probability 0 to state A, he would prefer not

to trade at such a price. The continuation value of player 1 is therefore approximately
equal to

π1
A(1 −π2

A)

(when ε → 0). The continuation value of player 2 in this case is π2
A, since he only trades

at his continuation value. Therefore, at date 0, player 2 would accept a price offer Q0 only



Theoretical Economics 11 (2016) Fragility of asymptotic agreement 213

if Q0 ≥ π2
A. But such an offer would leave player 1 at most a surplus of π1

A − π2
A. Since

π1
A −π2

A is strictly less than his continuation value π1
A(1 −π2

A), there will be no trade at
τ = 0. Instead, in any subgame-perfect equilibrium, player 1 waits for the information to
buy the asset at date 1 (provided that ρ(s) turns out to be in a range where he concludes
that the asset pays 1).

This example highlights two important implications of the type of learning analyzed
in this paper for game-theoretic and economic analysis. First, for players’ behavior at
τ = 1 after observing s, the crucial question is whether their beliefs will be close to each
other after observing s at τ = 1. If so, then their behavior will be very similar to that
postulated in the standard (learning) model. Second, for players’ behavior at τ = 0, the
crucial question is whether each player assigns high probability at τ = 0 to the event
that their beliefs will be similar at τ = 1 (as in our definition of asymptotic agreement).
If so, then the continuation values of each player will be as in the standard model, lead-
ing them to behave accordingly. Otherwise, they may behave quite differently, as our
example has illustrated.

This example also illustrates that it is not sufficient for each individual to be certain
that he will learn the truth for the equilibrium to be similar to that resulting under the
standard (learning) model. When individuals are uncertain about pθ, each is certain
that he will learn the true state, but is also certain that the other player will fail to do
so. This assessment then induces each to wait for the arrival of additional information
before trading.20

In our example, the players passively receive information between the two trading
periods (and our results do not depend on whether the signals they receive have direct
payoff implications, such as information concerning revenue streams or news on initial
public offerings (IPOs)). A more major extension of our setting would be to allow them
to take actions that impact the information they receive. Though this type of “active
learning” may increase their information, unless it somehow restores full identification,
it does not change the fundamental confounding problems that are at the root of the
lack of asymptotic agreement in our model.

6. Concluding remarks

The standard approach in game theory and economic modeling assumes that individ-
uals have a common prior, meaning that they have beliefs consistent with each other
regarding the game forms, institutions, and possible distributions of payoff-relevant pa-
rameters. This presumption is often justified by the argument that sufficient common
experiences and observations, either through individual observations or transmission of
information from others, will eliminate disagreements, taking agents toward common
priors. It receives support from a number of well known theorems in statistics, such as
Savage (1954) and Blackwell and Dubins (1962).

20This contrasts with the intuition that observation of common information should take agents toward
common beliefs and make trades less likely. This intuition is correct in models of learning under full iden-
tification and is the reason why previous models have generated speculative trade early in the game (e.g.,
Harrison and Kreps 1978 and Morris 1996).
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Nevertheless, existing results assume that conditional distribution (i.e., “interpreta-
tions”) of signals are known. This is sufficient to ensure that payoff-relevant parameters
(states) can be identified from limiting frequencies of signals. In many situations, indi-
viduals are not only learning about payoff-relevant parameters, but also about the inter-
pretation of different signals, i.e., learning would be taking place under uncertainty. For
example, many signals favoring a particular interpretation might make individuals sus-
picious that the signals come from a biased source. This may prevent full identification
(in the standard sense of the term in econometrics and statistics). In such situations,
information will be useful to individuals, but may not lead to full learning.

This paper investigates the conditions under which learning under uncertainty will
take individuals toward common priors and asymptotic agreement. We consider an
environment in which two individuals with different priors observe the same infinite
sequence of signals informative about some underlying parameter. However, learn-
ing is under uncertainty in the sense that each individual has a nondegenerate sub-
jective probability distribution over the likelihood of different signals given the values
of the parameter. When subjective probability distributions of both individuals have
full support, they will never agree, even after observing the same infinite sequence of
signals.

Our main results provide conditions under which a small amount of uncertainty
may lead to a substantial (nonvanishing) amount of asymptotic disagreement, namely
asymptotic agreement is discontinuous at certainty. We first show that asymptotic
agreement is discontinuous (and thus fragile) at certainty for every model. In par-
ticular, a vanishingly small amount of uncertainty about the signal distribution can
guarantee that both individuals attach probability arbitrarily close to 1 that there will
be a significant amount of asymptotic disagreement. Under an additional uniform
convergence assumption, we also characterize the conditions under which asymptotic
agreement is continuous at certainty. According to our characterization, asymptotic
disagreement may prevail even as the amount of uncertainty vanishes, depending on
the tail properties of the families of subjective probability distributions. These re-
sults imply that learning foundations of common priors are not as strong as generally
presumed.

Appendix A: Asymptotic agreement under full identification

In this appendix, we present a broad generalization of the asymptotic agreement result
in the standard models to our framework. Toward this end, we write supp(Fi

θ) for the
smallest closed set to which Fi

θ assigns probability 1; that is,
∫

supp(F) dF
i
θ = 1, and for

any x ∈ supp(Fi
θ) and any open neighborhood V of x,

∫
V dFi

θ > 0. We assume that the
supports of the frequencies are disjoint under different states, which ensures that the
model is fully identified.

Assumption 2 (Full identification from support restrictions). For all θ �= θ′ and i,
supp(Fi

θ)∩ supp(Fi
θ′) = ∅.
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We characterize the cases in which asymptotic agreement obtains under this full-
identification assumption and an additional genericity assumption. To state our char-
acterization, we first define the cross-entropy distance between ρ and p ∈ �(�) as21

H(ρ�p) ≡ −
∑
σ

ρσ log(pσ)


We also define

Pi(ρ) ≡ arg min
p∈⋃

θ supp(Fi
θ)
H(ρ�p)

as the set of frequency vectors p (among those that i initially finds possible) that are clos-
est to ρ according to cross-entropy H. We use #Pi(ρ) to denote the number of elements
in the set Pi(ρ). Our genericity assumption is presented next.

Assumption 3 (Genericity). For all θ ∈ � and each i ∈ {1�2}, supp(Fi
θ) is in the interior

of �(�) and for each ρ ∈ supp(Fi
θ), #Pj(ρ) = 1 (for j �= i).

This assumption is imposed for expositional simplicity and will be used only in the
following result. It holds generically in the sense that any Fi

θ can be approximated by
distributions that satisfy it. (Note that for any p̂ ∈ Pj(ρ) and ε ∈ (0�1), Pj(ερ+(1−ε)p̂) =
{p̂}.)

Theorem 6 (Asymptotic learning and agreement under full identification). Suppose As-
sumptions 2 and 3 hold. Then for each i ∈ {1�2} and j �= i,

(i) Pri(φi
θ�∞ = 1|θ)= 1

(ii) Pri(φ1∞ =φ2∞) = 1 if and only if Pj(ρ) ⊆ supp(Fj
θ) for all ρ ∈ supp(Fi

θ) and all θ.

(Common support). Under Assumptions 2, if supp(F1
θ) = supp(F2

θ) for all θ, then
Pri(φ1∞ = φ2∞)= 1 for each i.

The first part of the theorem states that full identification ensures asymptotic learn-
ing. The second part provides necessary and sufficient conditions for asymptotic agree-
ment. In particular, under full identification there will be asymptotic agreement if and
only if the supports of F1

θ and F2
θ are close enough according to cross-entropy, in the

sense that the closest point among
⋃

θ′ supp(Fj
θ′) to a point in supp(Fi

θ) lies in supp(Fj
θ).

It is remarkable that asymptotic agreement is a property of the supports. As a corollary to
this characterization, the third part states that the common support assumption implies
asymptotic agreement. The characterization is illustrated in the following example.

21The cross-entropy function is closely related to Kullback–Leibler divergence in information theory and
is often used as a measure of distance between two probability distributions. In particular, the Kullback–
Leibler divergence of p from ρ is H(ρ�p)−H(p�p), where H(p�p) is also the entropy of p. See, for example,
Burnham and Anderson (1989).
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Example 3. In the binary example, consider the following case. Individual 1 thinks that,
for any state θ, pθ�θ can be anywhere between 3

4 and 1. Individual 2 thinks that pA�a can
be anywhere between 3

4 and 1, while pB�b can be anywhere between p̂ and 1, where we
let p̂ > 1

2 vary. By symmetry, asymptotically, individual 1 assigns probability 1 on state A

whenever ρa > 1
2 and assigns probability 1 on state B whenever ρa < 1

2 . Individual 2 has
a different cutoff,

ρ̂a = log(4p̂)/ log(3p̂/(1 − p̂)) ∈ (
1 − p̂� 3

4

)
�

which solves the equation ( 3
4)

ρ( 1
4)

1−ρ = (1 − p̂)ρp̂1−ρ. He assigns probability 1 on state
A if ρa > ρ̂a and on state B if ρa > ρ̂a. Whether there is asymptotic agreement de-
pends on whether ρ̂a > 1

4 . When ρ̂a < 1
4 , individual 1 assigns positive probability to

the event that the state is B and ρ̂a < ρa < 1
4 . On that event, asymptotically, individ-

ual 1 assigns probability 1 on state B, while individual 2 assigns probability 1 on state
A, leading to extreme asymptotic disagreement. Indeed, the condition in the second
part of Theorem 6 fails for that case: for any ρ ∈ supp(F1

B) with ρ̂a < ρa < 1
4 , we have

P2(ρ) = {( 3
4 �

1
4)} � supp(F2

B). In contrast, when ρ̂a >
1
4 , that condition holds and there

is asymptotic agreement. For example, for any ρ ∈ supp(F1
B), we have ρa ≤ 1

4 < ρ̂a, and
thus P2(ρ) = {ρ} ⊆ supp(F1

B) ⊆ supp(F2
B). (One can check that in all other cases, the

condition holds.) Note that there is asymptotic agreement if and only if p̂ is below a
threshold, which is approximately 0
9878. ♦

Theorem 6 is a generalization of the following well known result of Savage (1954),
which was already discussed in the context of the binary example. Savage’s result is
the basis of the argument that Bayesian learning will push individuals toward common
beliefs and priors.

Corollary 1 (Savage’s theorem). Assume that each Fi
θ puts probability 1 on p̂θ for some

p̂θ such that p̂θ �= p̂θ′ for all θ �= θ′. Then asymptotic learning and agreement always
obtain, i.e., for each i = 1�2,

(i) Pri(φi
θ�∞ = 1|θ)= 1

(ii) Pri(φ1∞ =φ2∞) = 1.

Appendix B: Proofs

Proof of Lemma 1. Write

Pri(rn|θ′)
Pri(rn|θ)

=
∫ ∏

σ p
rσ�n
θ′�σf

i
θ′(pθ′)dpθ′∫ ∏

σ p
rσ�n
θ�σ f

i
θ(pθ)dpθ

=

∫ ∏
σ p

rσ�n
θ′�σ f

i
θ′ (pθ′ )dpθ′∫ ∏

σ p
rσ�n
θ′�σ dpθ′∫ ∏

σ p
rσ�n
θ�σ f iθ(pθ)dpθ∫ ∏
σ p

rσ�n
θ�σ dpθ

= Eλ[f iθ′ |rn]
Eλ[f iθ|rn]




Here, the first equality is obtained by dividing the numerator and the denominator by
the same term. The resulting expression on the numerator is the conditional expectation



Theoretical Economics 11 (2016) Fragility of asymptotic agreement 217

of f iθ′(pθ′) given rn under the flat (Lebesgue) prior on pθ′ and the Bernoulli distribution
on {st}nt=1. Denoting this by Eλ[f iθ′ |rn] and denoting the denominator, which is simi-
larly defined as the conditional expectation of fθ(pθ), by Eλ[f iθ|rn], we obtain the last
equality. By Doob’s consistency theorem for Bayesian posterior expectation of the pa-
rameter, as rn → ρ (that is, as rσ�n → ρσ for each σ ∈ �), we have that Eλ[f iθ′ |rn] → fθ′(ρ)
and Eλ[f iθ|rn] → f iθ(ρ) (Doob 1949 shows the convergence for almost all ρ, and Diaconis
and Freedman 1990 show the convergence for all ρ in our multinomial model). This
establishes

Pri(rn|θ′)
Pri(rn|θ)

→ Ri
θ�θ′(ρ)�

as defined in (3). Equation (2) then follows from (1). �

Proof of Theorem 1. Fix any (ε�θ�θ′� i) with ε > 0 and θ �= θ′. We will show that
limm→∞ Prim(R

i
θ�θ′�m ≥ ε|θ) = 0. Let V be a neighborhood of pi

θ such that pi
θ′ /∈ V̄ , where

V̄ is the closure of V . Define

Dm = {ρ ∈ V |Ri
θ�θ′�m(ρ) ≥ ε}


By definition,

Prim(R
i
θ�θ′�m ≥ ε|θ)≤ Prim(Dm|θ)+ 1 − Prim(V |θ)
 (10)

But

Prim(Dm|θ) =
∫
ρ∈Dm

f iθ�m(ρ)dρ

≤ 1
ε

∫
ρ∈Dm

f iθ′�m(ρ)dρ = 1
ε

Prim(Dm|θ′) (11)

≤ 1
ε

Prim(V |θ′)�

where the first inequality follows from the fact that Ri
θ�θ′�m = f iθ′/f iθ ≥ ε on Dm and the

second inequality holds since Dm ⊆ V . Combining (10) and (11), we obtain

0 ≤ Prim(R
i
θ�θ′�m ≥ ε|θ)≤ 1

ε
Prim(V |θ′)+ 1 − Prim(V |θ)


Now, since Fi
θ′ → δpi

θ′ and pi
θ′ /∈ V̄ , Prim(V |θ′) → 0. Likewise, since Fi

θ → δpi
θ

and pi
θ ∈ V ,

Prim(V |θ)→ 1. Therefore, the upper bound goes to 0, completing the proof. �

Proof of Theorem 2. Pick sequences pi
θ�m and ε̄ > 0 such that pi

θ�m → pi
θ and

‖pi
θ�m −p

j
θ′�m‖> ε̄/m for all (θ� i) �= (θ′� j). For each (θ� i), define

Di
θ�m ≡ {p ∈ �(�) : 3‖p−pi

θ�m‖ ≤ ε̄/m}�
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which will be the set of likely frequencies at state θ according to i. Notice that Di
θ�m ∩

D
j
θ′�m �=∅ if and only if θ = θ′ and i = j. Define

f iθ�m(ρ) ≡
{
xiθ�m if ρ ∈Di

θ�m

1/m otherwise,

where xiθ�m is normalized so that f iθ�m is a probability density function. By construction

of sequences f iθ�m and pi
θ�m, Fi

θ�m → δpi
θ

for each (θ� i). We will show that agreement is

strongly discontinuous under {Fi
θ�m}. Now

φi
θ�∞�m(ρ) = 1

1 + 1−πi
θ

πi
θmxiθ�m

if ρ ∈ Di
θ�m for some θ and φi∞�m(ρ) = πi otherwise. Note that φi

θ�∞�m(ρ) → 1 if ρ ∈Di
θ�m.

Moreover, since the sets Di
θ�m and D

j
θ′�m are disjoint for each θ′, φj

∞�m(ρ) = πj when

ρ ∈Di
θ�m. Hence, there exist m̄ such that for any m≥ m̄ and any ρ ∈Di

m ≡ ⋃
θ D

i�m
θ ,

‖φi∞�m(ρ)−φ
j
∞�m(ρ)‖ > ε�

where ε ≡ 1
2 minj�θ(1 − π

j
θ). But for each θ, Prim(D

i
θ�m|θ) ≥ 1 − 1/m, showing that

Prim(D
i
m)≥ 1 − 1/m. Therefore,

lim
m→∞ Prim(‖φi∞�m −φ

j
∞�m‖> ε) = 1


For the second part of the theorem, take π1 �= π2. Then, by construction, for each ρ,
‖φi∞�m(ρ) − φ

j
∞�m(ρ)‖ > min{ε�‖π1 − π2‖} > 0, showing that agreement almost-surely

discontinuous under {Fi
θ�m}. �

Proof of Theorem 3. For each m� 1, let

f iθ�m(ρ) ≡
⎧⎨
⎩
xθ/λ if ρθ ∈ [p̂i

θ − 1
2λ� p̂

i
θ + 1

2λ]
ε3 if ρθ < 1 − p̂i

θ′ − 1
2λ

ε otherwise,

where θ′ �= θ, ε = λ = 1/m, p̂1
A = p̂A + λ, p̂1

B = p̂B − λ, p̂2
A = p̂A − λ, p̂2

B = p̂B + λ, and
xθ = 1 − ε(p̂i

θ′ − 1
2λ)− ε3(1 − p̂i

θ′ − 1
2λ) ∈ (0�1). Here, xθ is close to 1 for large m. Then

Ri
A�B�m(ρ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1/ε2 if ρα < 1 − p̂i
B − 1

2λ

xB/ε
2 if 1 − p̂i

B − 1
2λ ≤ ρa ≤ 1 − p̂i

B + 1
2λ

1 if 1 − p̂i
B + 1

2λ < ρa < p̂i
A − 1

2λ

ε2/xA if p̂i
A − 1

2λ ≤ ρa ≤ p̂i
A + 1

2λ

ε2 if ρa > p̂i
A + 1

2λ,
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which is clearly decreasing in ρa when m is large. For ε ∼= 0, we have

Ri
A�B�m(ρ)

∼=

⎧⎪⎨
⎪⎩

∞ if ρa ≤ 1 − p̂i
B + 1

2λ

1 if 1 − p̂i
B + 1

2λ < ρa < p̂i
A − 1

2λ

0 if ρa ≥ p̂i
A − 1

2λ

and hence

φi
A�∞�m(ρ)

∼=

⎧⎪⎨
⎪⎩

0 if ρ ≤ 1 − p̂i
B + 1

2λ

πi if 1 − p̂i
B + 1

2λ < ρ< p̂i
A − 1

2λ

1 if ρ ≥ p̂i
A − 1

2λ.

Notice that when ρa ∈ [p̂2
A − 1

2λ� p̂
2
A + 1

2λ], we have ρa < p̂1
A − 1

2λ, so that φ2
A�∞�m(ρ)

∼= 1
and φ1

A�∞�m(ρ)
∼= π1

A, yielding |φ1
A�∞�m(ρ) − φ2

A�∞�m(ρ)| ∼= 1 − π1
A. Similarly, when

ρa ∈ [1 − p̂1
B − 1

2λ� p̂
1
B + 1

2λ], we have φ1
A�∞�m(ρ)

∼= 0 and φ2
A�∞�m(ρ)

∼= π2
A, so that

|φ1
A�∞�m(ρ) − φ2

A�∞�m(ρ)| ∼= π2
A. To complete the proof of the theorem, let us set Z̄ =

1
2 min{π2

A�1 −π1
A}. In that case,

lim
m→∞ Pr1

m

(|φ1
A�∞�m(ρ)−φ2

A�∞�m(ρ)| > Z̄
) = lim

m→∞ Pr1
m

(
ρa ∈ [

1 − p̂1
B − 1

2λ� p̂
1
B + 1

2λ
])

= π1
B > 0

and

lim
m→∞ Pr2

m

(|φ1
A�∞�m(ρ)−φ2

A�∞�m(ρ)| > Z̄
) = lim

m→∞ Pr2
m

(
ρa ∈ [

p̂2
A − 1

2λ� p̂
2
A + 1

2λ
])

= π2
A > 0�

completing the proof. �

Proof of Theorem 4. Part (i): Sufficiency. Fix any θ̂, and assume that Rj

θ̂�θ�∞(pi
θ̂
) = 0

for each θ �= θ̂. We will show that for every ε > 0,

lim
m→∞ Pri(φ1

θ̂�∞�m
> 1 − ε�φ2

θ̂�∞�m
> 1 − ε|θ̂) = 1� (12)

which implies that for each θ,

lim
m→∞ Prim(|φ1

θ�∞�m −φ2
θ�∞�m| < ε|θ̂) = 1


Since θ̂ is arbitrary, this yields the desired inequality for each θ:

lim
m→∞ Prim(|φ1

θ�∞�m −φ2
θ�∞�m|< ε)= 1


To prove (12), it suffices to prove that for every ε > 0, and every i, j and every θ,

lim
m→∞ Prim(R

j

θ̂�θ�m
< ε|θ̂) = 1
 (13)

Since Proposition 1 has established (13) for j = i already, we only need to prove (13)
for j �= i. Since R

j

θ̂�θ�m
converges uniformly to R

j

θ̂�θ�∞ and each R
j

θ̂�θ�m
is continuous,
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R
j

θ̂�θ�∞ is continuous at pi
θ̂

. Hence, there exists an open neighborhood V̂ ⊂ V i
θ̂

of pi
θ̂

such

that Rj

θ̂�θ�∞(ρ) < 1
2ε for each ρ ∈ V̂ . Since R

j

θ̂�θ�m
converges uniformly to R

j

θ̂�θ�∞ over V̂ ,

this implies that there exists m̄ < ∞ such that Rj

θ̂�θ�m
(ρ) < ε for each ρ ∈ V̂ and m> m̄.

But since Fi
θ̂�m

converges to δpi
θ̂

and V̂ is an open neighborhood of pi
θ̂

, Prim(V̂ |θ̂) → 1,

proving (13).
Part (i): Necessity. Suppose that Rj

θ�θ′�∞(pi
θ) �= 0 for some i �= j and θ �= θ′. We will

show that there exists ε0 > 0 such that

lim
m→∞ Prim(|φ1

θ�∞�m −φ2
θ�∞�m| > ε0|θ)= 1
 (14)

This implies that

lim
m→∞ Prim(|φ1

θ�∞�m −φ2
θ�∞�m| > ε0) ≥ πi

θ > 0�

showing that agreement is discontinuous at certainty under {Fi
θ�m}. To prove (14), we set

ε0 ≡ 1
2

(
1 − 1

1 + π
j

θ′
π
j
θ

1
2R

j
θ�θ′�∞(pi

θ)

)
> 0


Now, as in the sufficiency part, we use the uniform convergence of Rj
θ�θ′�m to R

j
θ�θ′�∞ and

continuity of Rj
θ�θ′�∞ to conclude that there exist an open neighborhood V̂ ⊂ V i

θ of pi
θ

and m̄ < ∞ such that Rj
θ�θ′�m(ρ) >

1
2R

j
θ�θ′�∞(pi

θ) for all ρ ∈ V̂ and for all m > m̄. But for

any such m and ρ, φj
θ�∞�m(ρ) < 1 − 2ε0. Once again, Prim(V̂ |θ)→ 1, showing that

lim
m→∞ Prim(φ

j
θ�∞�m(ρ) < 1 − 2ε0|θ)= 1
 (15)

Alternatively, by Proposition 1,

lim
m→∞ Prim(φ

i
θ�∞�m(ρ) > 1 − ε0|θ)= 1
 (16)

When φ
j
θ�∞�m < 1 − 2ε0 and φi

θ�∞�m > 1 − ε0, we have |φ1
θ�∞�m −φ2

θ�∞�m| > ε0. Therefore,
(15) and (16) imply (14), completing the proof of part (i).

Part (ii). Assume that Rj
θ�θ′�∞(pi

θ) �= 0 for all i �= j and θ �= θ′. Then, by (14), there

exists ε1 > 0 such that Prim(|φ1
θ�∞�m − φ2

θ�∞�m| > ε1|θ) → 1 for every θ. (To compute ε1,

replace R
j
θ�θ′�∞(pi

θ) with minθ�θ′ {Rj
θ�θ′�∞(pi

θ)} in the definition of ε0.) Therefore,

lim
m→∞ Prim(‖φ1∞�m −φ2∞�m‖> ε1)= 1�

showing that agreement is strongly discontinuous at certainty under {Fi
θ�m}. �

Proof of Theorem 5. It suffices to show that Ei
m[‖φ1

n�m − φ2
n�m‖] < ε because

Prim(‖φ1
n�m − φ2

n�m‖ > ε) < ε whenever Ei
m[‖φ1

n�m − φ2
n�m‖] < ε2. In our proof we will
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use Ei∞ and φi
n�∞ for the expectation operator and the posterior belief at n, respectively,

under the standard model (δpi
θ
)θ∈��i∈{1�2}. First, we observe that

lim
n→∞Ei∞[‖φ1

n�∞ −φ2
n�∞‖] = Ei∞

[
lim
n→∞‖φ1

n�∞ −φ2
n�∞‖

]
= 0� (17)

where the first equality is by the bounded convergence theorem, and the second equal-
ity is by the hypothesis of the theorem that there is asymptotic agreement under the
standard model, i.e., limn→∞ ‖φ1

n�∞ −φ2
n�∞‖ = 0 almost surely.

Next, we introduce a claim.

Claim 1. For any fixed n, we have

lim
m→∞Ei

m[‖φ1
n�m −φ2

n�m‖] = Ei∞[‖φ1
n�∞ −φ2

n�∞‖]
 (18)

Given this result, fix any ε > 0 and N < ∞. By (17), there exist n̄ < ∞ such that for all
n ≥ n̄,

Ei∞[‖φ1
n�∞ −φ2

n�∞‖] < 1
2ε


Alternatively, for each n ≥ n̄, by (18), there exists m̄n <∞ such that for all m> m̄n,

Ei
m[‖φ1

n�m −φ2
n�m‖]< Ei∞[‖φ1

n�∞ −φ2
n�∞‖] + 1

2ε


By picking m̄ = maxn̄≤n≤n̄+N m̄n, we conclude that for each m > m̄ and n ∈
{n̄� n̄+ 1� 
 
 
 � n̄+N},

Ei
m[‖φ1

n�m −φ2
n�m‖] < Ei∞[‖φ1

n�∞ −φ2
n�∞‖] + 1

2ε <
1
2ε+ 1

2ε = ε


This establishes the desired result. The proof is completed by providing a proof for the
claim.

Proof of Claim 1. For any rn, we write

Prim(rn)=
∑
θ

πi
θ

∫ ∏
σ

p
rn�σ
θ�σ dFi

θ�m(pθ) > 0

for the probability of observing rn. Since
∏

σ p
rn�σ
θ�σ is a continuous function of pθ and

Fi
θ�m → δpi

θ
,

lim
m→∞ Prim(rn) =

∑
θ

πi
θ

∏
σ

(pi
θ�σ)

rn�σ ≡ Pri∞(rn) > 0� (19)

where Pri∞(rn) is the probability of rn under the standard model. We also compute that

Ei
m[|φ1

θ�n�m −φ2
θ�n�m|] =

∑
rn

Prim(rn)

∣∣∣∣π
i
θ

∫ ∏
σ p

rn�σ
θ�σ dFi

θ�m(pθ)

Prim(rn)
− π

j
θ

∫ ∏
σ p

rn�σ
θ�σ dF

j
θ�m(pθ)

Prjm(rn)

∣∣∣∣
=

∑
rn

∣∣∣∣πi
θ

∫ ∏
σ

p
rn�σ
θ�σ dFi

θ�m(pθ)− Prim(rn)

Prjm(rn)
π
j
θ

∫ ∏
σ

p
rn�σ
θ�σ dF

j
θ�m(pθ)

∣∣∣∣
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Now, as m→ ∞,
∫ ∏

σ p
rn�σ
θ�σ dFi

θ�m(pθ) → ∏
σ(p

i
θ�σ)

rn�σ (as above) and Prim(rn)/Prjm(rn) →
Pri∞(rn)/Prj∞(rn) by (19) and the continuous mapping theorem. Therefore,

lim
m→∞Ei

m[|φ1
θ�n�m −φ2

θ�n�m|] =
∑
rn

∣∣∣∣πi
θ

∏
σ

(pi
θ�σ)

rn�σ − Pri∞(rn)

Prj∞(rn)
π
j
θ

∏
σ

(p
j
θ�σ)

rn�σ

∣∣∣∣
= Ei

m[|φ1
θ�n�∞ −φ2

θ�n�∞|]


Since maxθ is continuous, one more application of the continuous mapping theorem
yields (18), proving the claim. This completes the proof of the theorem. �

Proof of Theorem 6. Throughout the proof, Assumptions 2 and 3 are imposed. We
first develop the necessary notation.

Notation. For any i, write

Ui = {ρ | #Pi(ρ) = 1}

For every ρ ∈ Ui, write pi(ρ) for the unique member of Pi(ρ) and θi(ρ) for the unique θ

with pi(ρ) ∈ supp(Fi
θ). Writing rn(s) = (rσ�n(s))σ∈�, note that

φi
θ�n(s) = 1

1 + ∑
θ′ �=θ

πi
θ′

πi
θ

R̄i
θ�θ′�n(rn(s))

� (20)

where

R̄i
θ�θ′�n(rn(s)) =

∫ ∏
σ p

rσ�n(s)
σ dFi

θ′(p)∫ ∏
σ p

rσ�n(s)
σ dFi

θ(p)
=

∫
e−H(rn(s)/n�p)n dFi

θ′(p)∫
e−H(rn(s)/n�p)n dFi

θ(p)

 (21)

We will use the following lemmas in our proof.

Lemma 2. Under Assumptions 2 and 3, for any i, as n → ∞, if rn(s)/n → ρ ∈ Ui, then for
all θ′ �= θi(ρ),

R̄i
θi(ρ)�θ′�n(rn(s)) → 0


Proof. By definition, H(ρ�pi(ρ)) < H(ρ�p) for all p ∈ supp(Fi
θ′). Since H is continu-

ous and supp(Fi
θ′) is closed, this implies that there exist open neighborhoods Vp and Vρ

of pi(ρ) and ρ, respectively, such that

Ĥ ≡ sup
ρ′∈Vρ�p∈Vp

H(ρ′�p) < inf
ρ′∈Vρ�p∈supp(Fi

θ′ )
H(ρ′�p)≡ Ĥ ′


Since rn(s)/n → ρ, there exists n̄ < ∞ such that rn(s)/n ∈ Vρ for all n > n̄. Take any n > n̄.
Then, by definition of Ĥ ′, ∫

e−H(rn(s)/n�p)n dFi
θ′(p) ≤ e−Ĥ ′n
 (22)
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Moreover,∫
e−H(rn(s)/n�p)n dFi

θi(ρ)
(p) ≥

∫
p∈Vp

e−H(rn(s)/n�p)n dFi
θi(ρ)

(p)≥ e−Ĥn Pri(Vp|θi(ρ))� (23)

where the first equality is by nonnegativity of the exponential function and the second
inequality is by definition of Ĥ. Note that since pi(ρ) ∈ supp(Fi

θi(ρ)
) and Vp is an open

neighborhood of pi(ρ), by definition of supp, Pri(Vp|θi(ρ)) > 0. Substituting (22) and
(23) in definition (21), we then obtain

R̄i
θi(ρ)�θ′�n(rn(s)) ≤ e−Ĥ ′n

e−Ĥn Pri(Vp|θi(ρ))
= e−(Ĥ ′−Ĥ)n

Pri(Vp|θi(ρ)) 


Since Ĥ ′ > Ĥ, the right-hand side goes to zero, showing that Ri
θi(ρ)�θ′�n(rn(s)) → 0. �

Lemma 3. For any i and s ∈ S̄ with ρ(s) ∈Ui, as n → ∞, φi
θi(ρ(s))�n

(s) → 1.

This lemma follows from Lemma 2 and (20).
We are now ready to prove Theorem 6.

Proof of Part (i). Take any θ. First, by Doob’s consistency theorem,

Pri(rn(s)/n → ρ(s) ∈ supp(Fi
θ)|θ)= 1
 (24)

Moreover, for any ρ ∈ supp(Fi
θ), Pi(ρ) = {ρ}, yielding ρ ∈ Ui with pi(ρ) = ρ and θi(ρ) = θ.

Then Lemma 3 establishes that

Pri(φi
θ�n(s) → 1|θ)= 1


Proof of Part (ii): Sufficiency. Take any θ̂. By Assumption 3, supp(Fi
θ̂
) ⊆ Uj . As-

sume that for every ρ ∈ supp(Fi
θ̂
) ⊆ Uj , Pj(ρ) ⊆ supp(Fj

θ̂
), so that θj(ρ) = θ̂. Since

ρ ∈ supp(Fi
θ̂
), θi(ρ) = θ̂ as in part (i). Then, whenever rn(s)/n → ρ(s) ∈ supp(Fi

θ̂
), by

Lemma 3, φi
θ̂�n

(s) → 1 and φ
j

θ̂�n
(s) → 1. Consequently, |φ1

θ�n(s) − φ2
θ�n(s)| → 0 for each

θ ∈�. Therefore, by (24), for each θ ∈�,

Pri
(|φ1

θ�n(s)−φ2
θ�n(s)| → 0|θ̂) = 1


Since θ̂ is arbitrary, this shows that, for all θ,

Pri
(|φ1

θ�n(s)−φ2
θ�n(s)| → 0

) = 1


Proof of Part (ii): Necessity. Suppose that for some θ̂ and ρ̂ ∈ supp(Fi
θ̂
), Pj(ρ̂) �

supp(Fj

θ̂
), so that θj(ρ̂) �= θ̂ = θi(ρ̂). Recall that ρ̂ ∈ Ui and ρ̂ ∈ Uj (by Assumption 3),

with well defined θi(ρ̂) and θj(ρ̂). Now, since H is continuous, Pj is upper semicontinu-
ous. Hence, there exists an open neighborhood V̂ ⊂ Uj of ρ̂ such that θj(ρ) = θj(ρ̂) �= θ̂
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for each ρ ∈ V̂ . Thus, for any s ∈ S̄ with ρ(s) ∈ V̂ ∩ supp(Fi
θ̂
), Lemma 3 implies that

φi
θ̂�n

(s) → 1 and φ
j

θj(ρ̂)�n
(s) → 1, so that |φ1

θ̂�n
(s)−φ2

θ̂�n
(s)| → 1. Since V̂ is an open neigh-

borhood of ρ̂ ∈ supp(Fi
θ̂
), Pri(ρ(s) ∈ V̂ ∩ supp(Fi

θ̂
)|θ̂) > 0, showing that

Pri
(|φ1

θ̂�n
(s)−φ2

θ̂�n
(s)| → 1

)
> 0�

and thus contradicting asymptotic agreement. �
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