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Abstract

Technological change, from the advent of robots to expanded trade opportunities, cre-

ates winners and losers. How should government policy respond? We provide a gen-

eral theory of optimal technology regulation in a second–best world, with rich hetero-

geneity across households, linear taxes on the subset of firms affected by technological

change, and a nonlinear tax on labor income. Our first set of results consists of optimal

tax formulas, with minimal structural assumptions, involving sufficient statistics that

can be implemented using evidence on the distributional impact of new technologies,

such as robots and trade. Our final results are comparative static exercises illustrating,

among other things, that while distributional concerns create a rationale for non-zero

taxes on robots and trade, the magnitude of these taxes may decrease as the process

of automation and globalization deepens and inequality increases.
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1 Introduction

Robots and artificial intelligence technologies are on the rise. So are imports from China
and other developing countries. These changes create opportunities for some workers,
destroy opportunities for others, and generate significant distributional consequences, as
documented in the recent empirical work of Autor, Dorn and Hanson (2013) and Ace-
moglu and Restrepo (2017b) for the United States.

Should any policy response be in place? And if so, how should we manage new tech-
nologies? Should we become more Luddite as machines become more efficient or more
protectionist as trade opportunities expand? The goal of this paper is to provide a general
second-best framework to help address these and other related questions.

Answers to these questions necessarily depend on the range of available policy in-
struments. At one extreme, if lump-sum transfers are available, as in the Second Welfare
Theorem, or if linear taxes are available on all goods and factors, as in Diamond and
Mirrlees (1971a,b) and Dixit and Norman (1980), then redistribution can be done without
distorting production. In such cases, production efficiency implies the optimality of zero
taxes on robots and free trade. At another extreme, in the absence of any policy instru-
ment, whenever technological progress creates at least one loser, a welfare criterion must
be consulted and the status quo may be preferred.

Here, we focus on a more realistic situation where tax instruments are available, but
more limited than those ensuring production efficiency. We restrict the set of taxes that
can be imposed on households’ labor supply to be a function of their income, but not on
their labor type. This creates a canonical trade-off between redistribution and efficiency.
We consider two sets of technologies, which we refer to as old and new. For instance,
firms using the new technology may be producers of robots or traders that export some
goods in exchange for others. Our main focus is on the optimal regulation of the new
technology captured by ad-valorem taxes on firms using that technology. Key to our
analysis is the idea that, in addition to redistribution using nonlinear income-taxation,
there may be predistribution using taxes on new technology firms, e.g. taxes on robots or
trade, in order to affect wages across the income distribution.

Our first set of results characterizes the structure of optimal taxes on new technology
firms that best complements optimal income taxation. In a two-type environment, Naito
(1999) has proven that governments seeking to redistribute income from high- to low-skill
workers may have incentives to depart from production efficiency. Doing so manipulates
relative wages, which cannot be taxed directly, and relaxes incentive compatibility con-
straints. Our general analysis goes beyond this qualitative insight by allowing for rich
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heterogeneity across households and deriving optimal tax formulas expressed in terms
of sufficient statistics that are, at least in principle, empirically measurable.

Specifically, we provide two novel optimal tax formulas, each based on the general
observation that starting at an optimum, any small change in taxes should have zero
first-order welfare effects. The first of our formulas focuses on changes in the taxes on
new technology firms, while holding fixed the shape of the income tax schedule. The sec-
ond of our formulas accompanies the former tax changes with a reform of the income tax
schedule that holds fixed the distribution of utility across quantiles of the income distribu-
tion. Each formula provides different insights and involves its own set of sufficient statis-
tics, but they both give a central role to the impact on the wage distribution. Although
the response of wages to robots or trade is of obvious empirical interest for descriptive
reasons, our formulas show how it also provides a sufficient statistic for optimal policy
design. Given knowledge of this statistic, the specific structure of the economy leading to
a change in wages can be left in the background. For example, it is not necessary to take a
stand on how robots and workers may be combined to perform different tasks, or on how
production processes may get fragmented across countries. While these features may be
critical in shaping the impact of new technologies on wages, all that is needed according
to our formulas is knowledge of this impact, not how it comes about. This distinguishes
our approach from other more structural and quantitative explorations.

We illustrate the usefulness of our approach by exploring the magnitude of optimal
taxes on robots and trade. We focus on our second formula, which can be implemented
without taking a stand on preferences for inequality, since it does not involve social wel-
fare weights. Using the reduced-form evidence of Acemoglu and Restrepo (2017b) on
the impact of robots in the United States, we find efficient taxes on robots ranging from
3.78% to 6.42%. In contrast, the evidence of Chetverikov, Larsen and Palmer (2016) on the
impact of Chinese imports on U.S. inequality points towards even smaller efficient tar-
iffs, between 0.02% to 0.12%. While the estimated impact of robots and Chinese imports
on wages is of similar magnitude, robots account for a much smaller share of the U.S.
economy. According to our formula, this calls for a smaller tax on trade than robots.

While the previous results shed light on optimal taxes on robots and trade based on
recent empirical evidence, a distinct question is how future changes in the pace of au-
tomation and globalization may affect optimal technology regulation. Our final results
are comparative static exercises designed to explore this issue. We do so in the context of a
simple economy in which the government puts higher social welfare weight on the poor-
est households and where cheaper machines, either robots or imported machines from
China, increase inequality. Despite these two features, we first show that improvements
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in new technologies are associated with lower taxes on firms using those technologies.
Thus, as the process of automation and globalization deepens, more inequality may best
be met with lower Luddism and less protectionism.

We also show through a numerical example that when the economy is calibrated to
match existing reduced-form evidence on the impact of robots and Chinese imports on
relative wages, the optimal tax on machines accompanying optimal income taxes remains
small for all values of social preferences. When income taxes differ significantly from op-
timal ones, large taxes or subsidies on machines meant to undo the distortions associated
with income taxes are possible, but the welfare gains from such second-best interventions
remain minimal.

Related Literature

Our paper makes two distinct contributions to the existing literature. The first one is a
general characterization of the structure of optimal taxes in environments where different
factors (i.e. labor skill types) are subject to the same income tax. In so doing, we fill a gap
between the general analysis of Diamond and Mirrlees (1971a,b) and Dixit and Norman
(1980), which assumes that linear taxes on all factors are available, and specific examples,
typically with two goods and two labor skill types, in which only income taxation is
available, as in the original work of Naito (1999), and subsequent work by Guesnerie
(1998), Spector (2001), Naito (2006), Slavik and Yazici (2014), and Jacobs (2015).1 On the
broad spectrum of restrictions on available policy instruments, one can also view our
analysis as an intermediate step between the work of Diamond and Mirrlees (1971a,b) and
Dixit and Norman (1980) and the trade policy literature where it is common to assume
that the only instruments available for redistribution are trade taxes. In fact, our first
formula is a strict generalization of the formulas reviewed by Helpman (1997), including
Grossman and Helpman’s (1994) tariff formula.

Our second contribution is to offer a more specific application of our general formulas
to the taxation of robots and trade. In recent work, Guerreiro, Rebelo and Teles (2017)
and Thuemmel (2018) have studied models with both heterogeneous workers as well as
robots. Assuming factor-specific taxes are unavailable, they find a non-zero tax on robots
to be generally optimal, in line with Naito (1999). Although we share the same rationale

1In the first three papers, like in Dixit and Norman (1980), the new technology is international trade.
In another related trade application, Feenstra and Lewis (1994) study an environment where governments
cannot subject different worker types to different taxes, but can offer subsidies to workers moving from one
industry to another in response to trade. They provide conditions under which such a trade adjustment
assistance program are sufficient to guarantee Pareto gains from trade, as in Dixit and Norman (1980).
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for finding nonzero taxes on robots, based on Naito (1999), our main goal is not to sign
the tax on robots, nor to explore a particular production structure, but instead to offer
tax formulas highlighting key sufficient statistics needed to determine the level of taxes,
with fewer structural assumptions. In this way, our formulas provide a foundation for
empirical work as well as the basis for novel comparative static results.2 In another recent
contribution, Hosseini and Shourideh (2018) analyze a multi-country Ricardian model
of trade with input-output linkages and imperfect mobility of workers across sectors.
Although sector-specific taxes on labor are not explicitly allowed, these missing taxes can
be perfectly mimicked by the available tax instruments. By implication, their economy
provides an alternative implementation but fits Diamond and Mirrlees (1971b,a) and Dixit
and Norman (1980, 1986), where households face a complete set of linear taxes, including
sector-specific taxes on labor. Production efficiency and free trade then follow, just as they
did in Diamond and Mirrlees (1971a,b).3

2 Environment

We consider an economy with an arbitrary number of goods and a continuum of hetero-
geneous households supplying labor. Households have the same preferences, but differ
in their skills. We allow this heterogeneity to be multi-dimensional, unlike the classical
one-dimensional Mirrleesian model. For instance, a household may be more productive
at some tasks, but less productive at others, as in a Roy model. Households sell their
labor in competitive labor markets and pay nonlinear taxes on their earnings to the gov-
ernment. Production is carried out by competitive firms. The government may linearly
tax transactions between firms and households as well as the transactions that take place
between firms, inducing production inefficiency. This is the focus of our analysis.

2Related theoretical work on the employment and growth effects of automation include Benzell, Kot-
likoff, LaGarda and Sachs (2015) and Acemoglu and Restrepo (2017a).

3A separate line of work, e.g. Itskhoki (2008), Antras, de Gortari and Itskhoki (2017) and Tsyvinski and
Werquin (2018), studies technological changes such as trade or robots, without considering taxes on these
new technologies, but instead focusing on how the income tax schedule may respond to these changes.
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2.1 Preferences

All households have identical and weakly separable preferences between goods and la-
bor. The utility of household θ is given by

U(θ) = u(C(θ), n(θ)),

C(θ) = v(c(θ)),

where C(θ) is the sub-utility that household θ derives from consuming goods, n(θ) is
her labor supply, c(θ) ≡ {ci(θ)} is her vector of good consumption. Throughout our
analysis, we assume that the upper-level utility function u(C, n) is quasi-concave and
strictly increasing in C and decreasing in n, while the lower-level utility function v(c) is
quasi-homothetic, quasi-concave and strictly increasing in c.4

2.2 Technology

Households are distinguished by their skill θ ∈ Θ ⊆ RK with distribution F. Each skill
type θ provides a distinct labor input for use in production. We assume that, for at least
one of the elements of θ = (θ1, θ2, . . . , θK), higher values are associated with higher pro-
ductivity (thus, commanding higher wages).

We divide technologies into two types, which we refer to as old and new, each associ-
ated with a distinct production set. In our applications, the old technology is how most
production takes place, while the new technology captures either trade with the rest of
the world or the production of machines, like robots. The dichotomy between old and
new technologies is what allows us to consider the taxation of transactions between firms
and the resulting aggregate production inefficiency. Without such taxation we could con-
solidate technology into a single aggregate production set.

Old Technology. Let y ≡ {yi} denote the vector of total net output by old technology
firms and let n ≡ {n(θ)} denote the schedule of their total labor demand. Positive values
for yi represent output, while negative yi represent inputs. The production set associated
with the old technology corresponds to all production plans (y, n) such that

G(y, n) ≤ 0,

4Quasi-homotheticity is defined by the requirement that Marshallian demands are linear in total spend-
ing on the c goods. It nests the homothetic and quasilinear specifications as special cases. Though this
assumption simplifies parts of our analysis, it is not required for our main results, as shown in Costinot and
Werning (2018).
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where G is a strictly increasing, convex, and homogeneous function of (y, n). Homogene-
ity of G implies constant returns to scale.

Except for constant returns to scale, we impose no restriction on the old technology.
This allows for arbitrary production networks and global supply chains. For instance, old
technology firms may be able to produce a final good by executing a continuum of tasks,
with each task chosen to be performed by either workers or robots, as in Acemoglu and
Restrepo (2017a), or by domestic or foreign workers, as in Grossman and Rossi-Hansberg
(2008). In such environments, the production possibility frontier G can be derived from a
subproblem that solves the optimal assignment of workers and other inputs to tasks. The
commodity vector y then consists of the final good produced and the intermediate goods
demanded, i.e., the robots or foreign labor services supplied by new technology firms,
but omits tasks as they become subsumed in the definition of G. Appendix B.1 provides
the formal mapping between production functions that explicitly model tasks and our
general production possibility frontier G.

New Technology. Let y∗ ≡ {y∗i } denote the vector of total net output by new tech-
nology firms. The production set associated with the new technology corresponds to all
production plans y∗ such that

G∗(y∗; φ) ≤ 0,

where G∗ is a strictly increasing, convex, and homogeneous function of y∗ and φ > 0 is a
productivity parameter.

Unlike the old technology, the new technology does not employ labor directly. This
assumption fits well our applications to robots and trade. In the first case, new technol-
ogy firms may be robot-producers that transform a composite of all other goods in the
economy, call it gross output, into robots. This is the standard way to model capital accu-
mulation in a neoclassical growth model.5 In the second case, new technology firms may
be traders who export and import goods,

G∗(y∗; φ) = ∑
i

p̄i(φ)y∗i ,

where p̄i(φ) denotes the world price of good i. A change in φ corresponds to a terms-of-
trade shock that may be due to a change in transportation costs or productivity in the rest

5Due to constant returns to scale, profits are zero for the owners of new technology firms. In our
framework, one can capture windfall gains of initial owners by introducing endowments of robots. This
leads to issues similar to those found in the literature on capital taxation, with the optimum possibly calling
for expropriatory levels of taxation of such initial wealth.
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of the world.
Abstracting from labor in the new technology is convenient, as it implies that wages

are determined by the old technology. New technology has an effect on wages, through its
effect on the structure of production within the old technology, but not directly through
employment. For a fixed value of φ, this restriction is without loss of generality since
the new technology sector can always be defined as the last stage of production where
taxation is imposed, as described in Appendix B.2. For comparative static exercises, the
omission of labor from G∗ implicitly restricts attention to changes in φ that are labor-
neutral in the sense that that they do not induce changes in wages for given prices faced
by the old technology firms.

Resource Constraint. For all goods, the demand by households is equal to the supply
by old and new technology firms,

ˆ
c(θ)dF(θ) = y + y∗.

2.3 Prices and Taxes

Factors. Let w ≡ {w(θ)} denote the schedule of wages faced by firms. Because of in-
come taxation, a household with ability θ and labor earnings w(θ)n(θ) retains

w(θ)n(θ)− T(w(θ)n(θ)),

where T(w(θ)n(θ)) denotes its total tax payment. Crucially, the income tax schedule T is
the same for all households. This rules out agent-specific lump-sum transfers, in contrast
to the Second Welfare Theorem, as well as factor-specific linear taxes, in contrast to the
analysis of Diamond and Mirrlees (1971a,b) and Dixit and Norman (1980).

Goods. Let p∗ ≡ {p∗i } denote the vector of good prices faced by new technology firms.
Because of ad-valorem taxes t∗ ≡ {t∗i }, these prices may differ from the vector of good
prices p ≡ {pi} faced by old technology firms and households. Non-arbitrage implies

pi = (1 + t∗i )p∗i , for all i.

Production inefficiency arises if t∗ 6= 0 because of the wedge created between the two
technologies. In the robot context the tax in question might be a tax on robots produced
by the new technology and employed in the old technology. In a trade context, an import
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tariff or an export subsidy on good i corresponds to t∗i > 0, whereas an import subsidy or
an export tax corresponds to t∗i < 0. Since demand and supply only depend on relative
prices, we can normalize prices and taxes such that p1 = p∗1 = 1 and t∗1 = 0. We maintain
this normalization throughout.6

3 Equilibrium, Social Welfare, and Government Problem

We now define the equilibrium for this economy, introduce our general social welfare
criterion, and describe the government problem.

3.1 Equilibrium

An equilibrium consists of an allocation, c ≡ {c(θ)}, n ≡ {n(θ)}, C ≡ {C(θ)}, y ≡ {yi},
and y∗ ≡ {y∗i }, prices and wages, p ≡ {pi}, p∗ ≡ {p∗i }, and w ≡ {w(θ)}, as well as
an income tax schedule, T, and taxes on new technology firms, t∗ ≡ {t∗i }, such that: (i)
households maximize their utility, (ii) firms maximize profits, (iii) markets clear, (iv)
prices satisfy the non-arbitrage condition, and (v) the government’s budget is balanced.
All these equilibrium conditions are standard. We collect them in Appendix C.

The equilibrium determination of wages is central to our analysis. As shown in Ap-
pendix C, profit maximization by old technology firms implies a wage schedule

w(p, n; θ)

that depends on prices p and labor n. By affecting the labor demand of old technol-
ogy firms, changes in p affect wages. Given the limited ability of the government to tax
different factors differently, this creates a pecuniary motive for taxing goods. This predis-
tribution is the key mechanism at play in our optimal tax formulas.

3.2 Social Welfare

We consider a general social welfare criterion that depends on the distribution of indi-
vidual well-beings, not the particular well-being of certain agents. Any consumption
and labor supply schedule (c, n) ≡ {c(θ), n(θ)} is associated with a utility schedule
U ≡ {U(θ)}. This, in turn, induces a cumulative distribution over utilities, summarized

6Section 4.3 discusses the generalization of our results to environments where ad-valorem taxes on
old technology firms, t ≡ {ti}, are also available. In such case, the government may also create a wedge
between the prices p ≡ {pi} faced by old technology firms and those faced by consumers, q ≡ {qi}.
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by the utility levels Ū ≡ {Ū(z)} associated with each quantile z ∈ [0, 1]. The social wel-
fare objective is assumed to be a strictly increasing function of this induced distribution,

W(Ū).

When θ is one dimensional and higher-θ households achieve higher utility, as in the
standard Mirrleesian setup, this nests the special case of a weighted utilitarian objective.
When θ is multidimensional, our assumption aboutW only restricts Pareto weights to be
the same for all households θ earning the same wage, since they obtain the same utility.

3.3 Government Problem

The government problem is to select a competitive equilibrium with taxes that maximizes
social welfare. A compact statement of the government problem is as follows:

max
(c,n,y,y∗,p,p∗,w,T,t∗,Ū)∈Ω

W(Ū)

subject to
G∗(y∗; φ) = 0,

where the feasible set Ω imposes equilibrium conditions (i)-(iv), except for the require-
ment that new technology firms are on their production possibility frontier, G∗(y∗; φ) = 0,
as also described in Appendix C. By Walras’ Law, G∗(y∗; φ) = 0 if and only if the govern-
ment’s budget balance condition (v) holds. With this in mind, we sometimes refer to this
constraint as the government’s budget balance condition.

4 Optimal Technology Regulation

Our first set of results characterizes the structure of taxes on new technology firms. Specif-
ically, we provide optimal tax formulas expressed in terms of sufficient statistics and us-
ing minimal structural assumptions.

4.1 Efficiency vs. Redistribution

Our tax formulas are derived by starting from an initial equilibrium with taxes (t∗, T) and
engineering marginal changes δt∗ in the taxes on the new technology firms and changes
in the nonlinear tax schedule δT, such that all the equilibrium conditions are met except,
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potentially, G∗(y∗; φ) = 0. These marginal tax changes, in turn, induce general equilib-
rium marginal adjustments in prices δp, wages δw, quantities δy∗, labor δn, as well as
other variables and, ultimately, social welfare.7 Our formulas differ in how the nonlinear
tax is adjusted.

We start with an intermediate result that encompasses all cases, providing a condition
that the marginal tax changes δt∗ and δT as well as the marginal adjustments δp, δw, δy∗

and δn must satisfy so that welfare is not improved by the variation. For any household
at the quantile z ∈ [0, 1] of both the utility and wage distribution, let w̄(z), n̄(z), x̄(z), and
c̄(z) denote the common wage, labor supply, earnings, and consumption vector, respec-
tively, and let τ(z) ≡ T′(x̄(z)) denote the marginal income tax rate. Using the previous
notation, our first optimal tax result can be stated as follows.

Lemma 1. Suppose that taxes (t∗, T) are optimal. Then for any variation (δt∗, δT),

−∑
i

t∗i (p∗i y∗i )δ ln y∗i −
ˆ

τ(z)x̄(z)δ ln n̄(z) dz

=

ˆ
[λ̄(z)− 1]x̄(z)[(1− τ(z)) δ ln w̄(z)− δT(z)

x̄(z)
−∑

i

pi c̄i(z)
x̄(z)

δ ln pi] dz, (1)

where λ̄(z) measures the social marginal benefit of allocating income to households at quantile z,
as described in Appendix D.1.

Lemma 1 captures the trade-off between efficiency and redistribution. It states that
for a marginal change in taxes not to improve welfare, its marginal costs in terms of ef-
ficiency should be equal to its marginal benefit in terms of redistribution. The formal
proof is based on a standard variational argument similar to those used, for instance, in
Saez (2001) and Tsyvinski and Werquin (2018) to characterize properties of the income tax
schedule. The novelty here is to use Lemma 1 to study the structure of optimal commod-
ity taxes, thereby opening up the door for generalizations and empirical applications of
Naito’s (1999) original insights.

Efficiency considerations are reflected in two fiscal externalities on the left-hand side
of equation (1). The first term represents the change in revenues from the linear tax t∗,
also equal to the marginal increase in the deadweight burden or “Harberger triangle”;
the second term captures the change in revenue from the non-linear income tax schedule.
These changes in revenue are not internalized by private agents and thus represent a
change in efficiency.

7These marginal adjustments are general equilibrium adjustments in the sense that δp, δw, δy∗, δn are
total derivatives that take into account both the direct effect of the change in taxes on each of these variables
as well as their indirect effect through changes in all other prices and quantities.
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Distributional considerations are represented by the right-hand side. It evaluates
the change in utility in monetary terms directly perceived by a household, weighted by
λ̄(z)− 1. By an envelope argument, the percentage change in real income for z is given
by (1− τ(z)) δ ln w̄(z)−∑i

pi c̄i(z)
x̄(z) δ ln pi − δT(z)

x̄(z) . The first two terms, (1− τ(z)) δ ln w̄(z)−
δT(z)
x̄(z) , capture the percentage change in income, due to both the change in before-tax

wages as well as the change in the tax schedule. The final term −∑i
pi c̄i(z)
x̄(z) δ ln pi adjusts

this change in income by a household-specific measure of inflation.
It is also important to note that all variables and adjustments in equation (1) are ex-

pressed in terms of the quantile z, not the underlying skills θ. This implies that one can
collapse heterogeneity and proceed as if there were a single dimension of heterogene-
ity. From a theoretical standpoint, this feature derives both from our assumption that
the government’s social welfare function only depends on the distribution of utility lev-
els {Ū(z)} and uses a mathematical result that equates the change in the wage w̄(z) at
a given quantile z with the average change in the wage for households originally at this
quantile.8

From a practical standpoint, this is critical. It implies that researchers can focus mea-
surement on changes in the distribution of wages {w̄(z)}, as is often done in practice
for positive, descriptive purposes. Individual workers may move across the wage dis-
tribution, switching quantiles, as panel data would reveal, but a repeated cross-section
of wages is sufficient. In so doing, we provide a normative rationale for quantile wage
regressions.

4.2 Optimal Tax Formulas

We now explore two feasible tax variations, each leading to a novel optimal tax formula.
Both variations lead to changes in y∗ in any desired direction, but differ with respect to
the nonlinear labor income tax schedule. In particular, we consider variations with:

i. no change in (the shape of) the income tax schedule, δT = 0;

ii. no change in (the distribution of) utility, δŪ = 0.

To obtain a formula for the tax on good i 6= 1 in each of these cases, we focus on variations
in the taxes on new technology firms δt∗ such that δy∗i , δy∗1 6= 0 and δy∗j = 0 for j 6= i, 1.

8The formal argument, which is related to Reynolds Transport Theorem, can be found in Appendix D.1.
This reduction in dimensionality due to the equivalence between these two measures of wage changes has
no counterpart in the context of the standard Mirrlees optimal income-tax analysis (e.g. Saez, 2001), where
wages are assumed to be fixed.
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No change in (the shape of) the income tax schedule. Our first variation is the simplest.
It leaves the labor income tax schedule unchanged, up to some uniform lump-sum trans-
fer that maintains the government’s budget balance, G∗(y∗; φ) = 0. As demonstrated in
Appendix D.2, substituting for the value of this lump-sum transfer in equation (1) leads
to the following formula.

Proposition 1 (δT = 0). The optimal tax on good i 6= 1 satisfies

t∗i =

ˆ
[1− λ̄(z)´

λ̄(v)dv
]
x̄(z)
p∗i y∗i

[(1− τ(z))
δ ln w̄(z)

δ ln y∗i
|δT=0 −∑

j

pj c̄j(z)
x̄(z)

δ ln pj

δ ln y∗i
|δT=0]dz

−
ˆ

τ(z)
x̄(z)
p∗i y∗i

δ ln n̄(z)
δ ln w̄(z)

|δT=0
δ ln w̄(z)

δ ln y∗i
|δT=0dz. (2)

While Proposition 1 follows mechanically from Lemma 1, it offers a strict generaliza-
tion of, as well as a new perspective on, the tax formulas found in the political economy
of trade literature. The models discussed in Helpman’s (1997) review, for instance, focus
on the special case with quasi-linear preferences, with inelastic labor supply, without la-
bor income taxation, and with sector-specific factors of production. Under quasi-linear
preferences, u(v(c), n) = c1 + ∑i 6=1 vi(ci)− h(n), our formula becomes

t∗i =

ˆ {
[1− λ̄(z)´

λ̄(v)dv
][1− τ(z)]− τ(z)ε(z)

}
x̄(z)
p∗i y∗i

δ ln w̄(z)
δ ln y∗i

|δT=0 dz, (3)

where ε(z) ≡ d ln h′(n(z))/d ln n denotes the elasticity of labor supply with respect to the
wage at quantile z, i.e. the percentage change in labor supply caused by a one-percent
change in the wage of any household with earnings initially in that quantile, holding
marginal tax rates fixed. Under the other three restrictions, with each z now correspond-
ing to the index of a specific factor, so that δw̄(z)

δy∗i
|δT=0 = dw̄(z)

dy∗i
= 0 for z 6= i, one obtains

the following corollary of Proposition 1.

Corollary 1. Suppose that preferences are quasi-linear, labor supply is inelastic, labor income
cannot be taxed, and factors are sector-specific. Then the optimal tax on good i 6= 1 satisfies

t∗i =

(
λ̄(i)´
λ̄(v)dv

− 1
)
×

(
− 1

p∗i

dx̄(i)
dy∗i

)
.

This expression coincides with the tariff formula derived by Helpman (1997) for vari-
ous political-economy models, including the lobbying model of Grossman and Helpman
(1994), where tariffs are expressed as a function of the the ratio of domestic output to
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imports, the elasticity of import demand, and a dummy variable that captures whether
sectors are politically organized or not.

Our alternative way of expressing optimal tariffs succinctly captures the essence of
trade protection as predistribution. Corollary 1 states that protection in a given sector i, as
measured by the gap between the domestic and foreign prices, pi − p∗i = t∗i p∗i , should be
equal to the Pareto weight that the government puts on workers from sector i (relative to
other sectors) times the marginal impact of a decrease in imports on the earnings of these
workers. Different political-economy models—direct democracy (Mayer, 1984), political
support function (Hillman, 1982), tariff formation function (Findlay and Wellisz, 1982),
electoral competition (Magee et al., 1989), and influence-driven contributions (Grossman
and Helpman, 1994)—simply correspond to different Pareto weights, λ̄(i).

No change in (the distribution of) utility. Our second variation complements changes
in taxes on new technology firms δt∗ with changes in the income tax schedule δT that
keeps the distribution of utility unchanged. This amounts to setting δT(z) equal to the
change in real incomes [1− τ(z)]n̄(z)δw(z)− ∑j c̄j(z)δpj at all quantiles z of the income
distribution.9 As demonstrated in Appendix D.3, this second variation leads after simpli-
fications to the following optimal tax formula.

Proposition 2 (δŪ = 0). The optimal tax on good i 6= 1 satisfies

t∗i =

ˆ
τ(z)

x̄(z)
p∗y∗i

εH(z)
εM(z) + 1

δ ln ω(z)
δ ln y∗i

|δŪ=0 dz, (4)

with ω(z) ≡ w̄′(z)/w̄(z) the growth rate of the wage, εH(z) the Hicksian labor supply elasticity,
and εM(z) the Marshallian labor supply elasticity.

The main attractive feature of Proposition 2 is that it does not require any information
on the welfare weights λ̄(z). This is because, by construction, the distribution of utility is
unaffected by our variation; thus, social welfare is unaffected. As a result, distributional
considerations vanish and only efficiency considerations remain, captured by the labor
fiscal externality. The key step in the proof of Proposition 2 is to show that this fiscal
externality takes an extremely simple form, with the change in labor supply equal to

δ ln n̄(z) = − εH(z)
εM(z) + 1

δ ln ω(z). (5)

9In accompanying the tax reform of interest, here changes in taxes on new technology firms, with a
distributively offsetting adjustment to income taxes, we follow the same general strategy as Kaplow (2010).
A detailed analysis of the properties of such adjustments can be found in Tsyvinski and Werquin (2018).

13



To understand why changes in labor supply must be related in this way to changes in the
growth rate of wages, it is convenient to start from the incentive compatibility constraint,

Ū(z) = max
z′

u(C̄(z′), n̄(z′) w̄(z′)
w̄(z) ), (6)

where C̄(z) is the indirect utility from consumption, given income w̄(z)n̄(z)−T(w̄(z)n̄(z))
and prices p. The Envelope Theorem implies Ū′(z) = −ūn(z)ω(z)n̄(z) with ūn(z) ≡
un(C̄(z), n̄(z)). Since our variation holds the distribution of utility unchanged, δŪ(z) = 0,
it must also satisfy δŪ′(z) = δ[−ūn(z)ω(z)n̄(z)] = 0, or in logs,

δ ln n̄(z) = −δ ln ω(z)− δ ln(−ūn(z)).

In the special case where preferences are quasi-linear, u(v(c), n) = c1 +∑i 6=1 vi(ci)− h(n),
δ ln(−ūn(z)) = 1

ε(z)δ ln n̄(z), with ε(z) ≡ d ln h′(n(z))/d ln n, and equation (5) follows.
The same logic extends to general preferences provided that differences between Hicksian
and Marshallian labor supply elasticities are accounted for, as shown in Appendix D.3.

For purposes of implementation, the fact that welfare weights do not enter the for-
mula in Proposition 2 must be welcomed. It opens up the possibility of a purely empirical
evaluation, without any subjective choice over the social welfare objective. Our formula
effectively rules out a first-order dominant improvement in the distribution of utilities.
Our general strategy is reminiscent of the one used by Dixit and Norman (1986) to show
the existence of Pareto gains from trade by constructing commodity taxes such that all
households are kept at the same utility level under free trade, while simultaneously in-
creasing the fiscal revenues of the government. Here, we show that unless the formula in
Proposition 2 holds, one can also construct changes in taxes that increase fiscal revenues,
while holding utility fixed at all quantiles of the wage distribution.10

4.3 Discussion

Wage Manipulation as Predistribution. Despite their differences, all our formulas give
center stage to the change in the wage schedule, as either captured by the change in the
wage level w, as in Proposition 1 and Corollary 1, or wage growth ω, as in Proposition
2. Our formulas make clear that changes in the quantiles of the wage distribution, which

10The existence of a nonlinear income tax schedule T plays a crucial role, as evidenced by the presence
of the marginal tax rates τ(z). Everything else being equal, higher marginal taxes τ(z) potentiate fiscal
externalities and demand larger t∗i . To take an extreme case, if marginal taxes were zero, τ(z), then the
formula immediately implies t∗i = 0. This should come as no surprise: the First Welfare Theorem holds in
our environment, so the absence of taxation leads to a Pareto optimum that cannot be improved upon.
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may be of empirical interest for descriptive reasons, is actually a sufficient statistic for
optimal policy design. Given knowledge of this statistic, the underlying structure of the
economy leading to the change in wages can be left in the background.

Unlike in Diamond and Mirrlees (1971a,b) and Dixit and Norman (1980), the govern-
ment here cannot achieve its distributional objectives by taxing workers of different types
at different rates. To achieve the same objectives, it is now forced to predistribute by ma-
nipulating wages before taxes. It does so through taxes t∗ that affect the prices p that
firms face, and, in turn, their demand for workers of different types, as in Naito (1999).

Note that the fact that only the change in the growth rate ω(z) = w′(z)/w(z), a mea-
sure of inequality, rather than the level w(z), appears in Proposition 2 immediately im-
plies that a zero tax is optimal if the impact on wages is proportionally uniform across z.
This reflects the fact that only relative wages matter for incentives. To see this more for-
mally, consider again the incentive compatibility constraint (6). In Propositions 2, ω(z) is
the local counterpart to w̄(z′)

w̄(z) . It captures the fact that a household of type z that earns the
same amount as one of type z′must work n̂(z, z′) where w̄(z)n̂(z, z′) = w̄(z′)n̄(z′). Hence,
changes in relative wages may tighten or loosen incentive compatibility constraints, not
changes in the overall wage level. This is the same mechanism at play as in Stiglitz (1982)
and Rotschild and Scheuer (2013), albeit in environments without commodity taxation.

Taxes on Old and New Technology Firms. Our previous formulas have assumed that
only taxes on new technology firms were available. What if taxes on old technology firms
were available as well? In a trade context, this would mean the possibility of impos-
ing production taxes rather than import tariffs or export taxes. We now describe how
our results extend to environments where the government can create wedges between
the prices faced by old technology firms, p ≡ {pi}, the prices faced by new technology
firms, p∗ ≡ {p∗i }, and the prices faced by consumers, q ≡ {qi}, with pi = (1 + ti)p∗i and
qi = (1+ t∗i )p∗i . In such environments, the trade-off between efficiency and redistribution
described in Lemma 1 generalizes to

−
ˆ

∑
i

t∗i (p∗i c̄i(z))δ ln c̄i(z)dz + ∑
i

ti(p∗i yi)δ ln yi −
ˆ

τ(z)x̄(z)δ ln n̄(z) dz

=

ˆ
[λ̄(z)− 1]x̄(z)[(1− τ(z)) δ ln w̄(z)− δT(z)

x̄(z)
−∑

i

qi c̄i(z)
x̄(z)

δ ln qi] dz. (7)

Compared to equation (1), the first term on the left-hand side is now split into two, reflect-
ing the fact that the fiscal externality associated with changes in consumption and output
are now different. In addition, the price deflator on the right-hand side is now given by

15



∑i
qi c̄i(z)
x̄(z) δ ln qi, reflecting the fact that consumer prices are now given by q rather than p.
Using the standard Atkinson and Stiglitz’s (1976) logic, one can show that for a feasi-

ble variation not to improve welfare, q and p∗ should be equalized. That is, there should
only be a wedge between old and new technology firms, but not households and new
technology firms. One can view the absence of the second wedge as an expression of the
Targeting Principle. Since wages depend on the labor demand of those firms, redistribu-
tion through wage manipulation is best achieved by manipulating p, without introducing
any additional consumption distortion by manipulating q.11

Given the equality between q and p∗, one can use the same steps as in Section 4.2 to go
from equation (7) to each of our formulas. The only difference between our old formulas
and the new ones is that the differentials on the right-hand side should now be taken
with respect to δy rather than δy∗, reflecting again the fact that only the output of old
technology firms is being distorted, not the consumption of households.12

A Pigouvian Interpretation. Interestingly, our formulas provide a direct expression for
the tax rate. This differs from the optimal linear tax literature (e.g. Diamond and Mirrlees,
1971b), which usually derives a system of simultaneous equations, with the entire set of
tax rates on the left hand side. We could have stated our formulas in such forms by
focusing on price variations such that δpi 6= 0 and δpj = 0 for j 6= i, 1. In vector and
matrix notation, the formula in Proposition 2, for instance, would then become

[Dpy∗]δŪ=0(p∗ − p) =
ˆ

τ(z)x̄(z)
εH(z)

εM(z) + 1
[∇p ln ω(z)]δŪ=0 dz

with [Dpy∗]δŪ=0 ≡ {(δy∗j /δpi)|δŪ=0} and [∇pω(z)]δŪ=0 ≡ {(δω(z)/δpi)|δŪ=0}. Our for-
mulas, which focus on quantity variations, are more akin to the Pigouvian tax literature,
which provides an explicit expression for the tax on each good in terms of its externality.
Indeed, we favor a Pigouvian interpretation of our formulas, as correcting for distribu-
tional externalities: if an extra unit of y∗i is produced, then this has an impact on the wage
schedule that, in turn, affects distribution and social welfare; the tax asks agents to pay

11Mayer and Riezman (1987) establish a similar result in a trade context with inelastic factor supply and
no income taxation. If both producer and consumer taxes are available, they show that only the former
should be used. This result, however, requires preferences to be homothetic, as discussed in Mayer and
Riezman (1989). Our result does not require this restriction. In fact, the quasi-homotheticity of the subutility
v is not necessary either. This reflects the fact that we have access to non-linear income taxation and that
preferences are weakly separable. Hence, absent the wage manipulation motive, there is no rationale for
commodity taxation, as in Atkinson and Stiglitz (1976).

12The counterpart of Corollary 1 provides a strict generalization—to an environment with endogenous
labor supply, nonlinear income taxation, as well as general preferences and technology—of the optimal
production taxes in Dixit (1996).
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for these marginal effects.

Full versus Partial Optimality. Provided that the government optimally chooses both
the taxes on new technologies t∗ and the income tax schedule T, the taxes on new technol-
ogy firms given by Propositions 1 and 2 must coincide, for any given welfare function. In
this situation, both formulas highlight the best way to complement income taxation with
predistribution in order to achieve some redistributional objectives. The fact that social
preferences explicitly enter the first formula but not the second reflects the fact that in the
latter, the welfare weights λ̄(z) are implicitly revealed by the marginal tax rates τ(z) after
controlling for the distortionary cost of redistribution, as measured by the labor supply
elasticities εH(z) and εM(z).13

Away from an optimum, there is a priori no reason for the taxes on new technologies
offered by our two formulas to coincide. There should also be no presumption as to
which formula is more useful. In such situations, each formula highlights an alternative
way to increase welfare through a different marginal change in taxes. Specifically, if taxes
on good i observed in equilibrium are lower than those predicted by the right-hand side
of (2), then a small change in t∗ designed to lower y∗i , while holding the shape of the
income tax schedule fixed and rebating the proceed in a lump-sum fashion, increases
social welfare W(Ū).14 Likewise, if taxes on good i observed in equilibrium are lower
than those predicted by the right-hand side of (4), then a small change in t∗ that lowers
y∗i , while reforming income taxes to keep the distribution of utility fixed, can be used to
create a fiscal surplus (that can later be rebated in a lump-sum fashion in order to increase
Ū(z) for all z). As usual, if the sufficient statistics appearing on the right-hand side of a
formula were to be unaffected by these marginal tax reforms, then the optimal tax on good
i could still be read directly from that formula, despite the economy not being initially at
an optimum.15

Absent full optimality, it should also be clear that any of our formulas may fail to de-
tect welfare-improving changes in t∗. For instance, consider the extreme case where there
are no commodity taxes and no income taxes observed in equilibrium. In this situation,
Proposition 2 leads to t∗i = 0, which is what a utilitarian government would have found

13This is the idea behind Werning’s (2007) test of whether an income tax schedule is Pareto optimal.
Namely, it is if the inferred Pareto weights are all positive.

14Recall that any of our tax variations also holds fixed the output of other goods by new technology
firms: y∗j = 0 for all j 6= i. In the general environment that we consider, lowering y∗i may not necessarily
consist in solely raising t∗i , but instead a linear combination of such taxes. The mapping from changes in
output to changes in taxes is simply given by the inverse of Dpy∗.

15Of course, starting from a situation where the formulas in Propositions 1 and 2 do not coincide, the
right-hand side of at least one of these two formulas would have to vary along the path to an optimum.
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optimal. But suppose that the government has Rawlsian preferences, so that the absence
of taxes is undesirable. In this case, the government enjoys many ways of improving wel-
fare. It could change the nonlinear tax schedule only, or it could also change the linear tax
t∗ along the lines of Proposition 1. In this case, the formula in Proposition 1 may detect
an improvement for a particularly chosen welfare function, even if the formula in Propo-
sition 2 does not, because, in point of fact, there is no Pareto improvement. While the
formula in Proposition 2 is the one that fails to detect an improvement in this example, it
is easy to construct examples where the the opposite happens.16

Finally, it is worth stressing the obvious: if the formulas in Propositions 1 and Proposi-
tion 2 do not coincide, then the income tax schedule is not locally optimized. Thus, rather
than change t∗ to improve welfare, one may prefer to simply change the income tax T. As
we show in an example in Section 6.3, this may have much larger welfare gains.

5 Putting the Formulas to Work

We now illustrate through two examples, robots and trade, how our theoretical results
can be combined with existing reduced-form evidence to provide estimates of optimal
taxes.

5.1 Preliminary

We restrict attention to the formula displayed in Proposition 2. The main benefit of this
formula is that it which allows us to dispense with any assumption on welfare weights.
The main potential drawback is that the wage elasticity appearing on the right-hand side,
δ ln ω(z)

δ ln y∗i
|δŪ=0, a priori depends on the details of the variation of the income tax schedule

that holds utility fixed.17 Since this particular variation is unlikely to have been observed

16Suppose, for instance, that preferences are quasi-linear and that the marginal income tax schedule is
such that τ(z)

1−τ(z) = 1
ε(z) [1−

λ̄(z)´
λ̄(v)dv ] 6= 0. As can be seen from equation (3), the formula in Proposition 1

would lead to t∗i = 0, which is what a government unable to affect the shape of its income tax schedule
and with welfare weights {λ̄(z)} would have chosen. The formula in Proposition 2, however, shows that
a small change in change in t∗ that lowers y∗i , accompanied by the proper income tax reform, could raise
utility at all quantiles of the income distribution. Mathematically, the general issue illustrated by these two
examples is that a derivative of the Lagrangian associated with the government’s problem can be zero, even
if social welfare is not maximized.

17This same issue does not affect the labor supply elasticities, εH(z) and εM(z), which only depend on
the structure of preferences, as described in Appendix D.2. This stands in contrast to Proposition 1, where
the elasticity (δ ln n̄(z)/δ ln w̄(z))|δT=0 may also depend on these considerations, unless preferences are
quasi-linear, in which case (δ ln n̄(z)/δ ln w̄(z))|δT=0 = ε(z) = εH(z) = εM(z).
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in practice, a natural question is whether there are other wage elasticities that could be
used to implement Proposition 2. The next proposition answers in the affirmative.

Proposition 3 (δŪ = 0, first-order approximation). The optimal tax on good i 6= 1 satisfies

t∗i =

ˆ
τ(z)

x̄(z)
p∗i y∗i

εH(z)
εM(z) + 1

δ ln ω(z)
δ ln y∗i

|δG∗=0 dz + O(ε̄2)

with δG∗ = 0 a budget-balanced variation and ε̄ such that |εH(z)|, |εM(z)| < ε̄ for all z ∈ [0, 1].

The formal proof is contained in Appendix E.1, but the basic idea is as follows. The
difference in the wage responses across all budget-balanced variations stems from pos-
sible differences in labor supply. When labor supply is unchanged the two variations
generate the exact same change in prices and wages. If labor supply changes are small,
the differences are small. More precisely, the differences in labor supply are proportional
to labor supply elasticities. In terms of the optimal tax rate, note that labor supply elastici-
ties enter the formula in Proposition 2 multiplicatively. This then implies that substituting
one wage elasticity for another creates a difference in labor supply of only second-order in
terms of labor supply elasticities. As a result, to a first-order approximation the formula in
Proposition 2 can ignore the differences in these indirect effects and, thus, employ wage
elasticities derived under any budget-balanced variation, including our earlier δT = 0
variation.

Since estimates of labor supply elasticities are small, as reviewed recently in Chetty
(2012), we will employ the first-order approximation in Proposition 3 to explore the mag-
nitude of an optimal ad-valorem tax t∗m on either robots or imports,

t∗m '
ˆ

τ(z)
x̄(z)
p∗my∗m

εH(z)
εM(z) + 1

δ ln ω(z)
δ ln y∗m

|δG∗=0 dz. (8)

5.2 Quantitative Example (I): Robots

To calculate the efficient tax on robots in the United States using equation (8), the key in-
put is the elasticity of relative wages with respect to the number of robots, δ ln ω(z)

δ ln y∗m
|δG∗=0.

To recover that elasticity, the ideal experiment would engineer a marginal change in taxes
that increases the number of robots in the entire United States by one unit, while holding
the government’s budget balance, and record the differential changes in wages between
consecutive quantiles of the income distribution. As a first proxy for such an ideal exper-
iment, we propose to use the empirical estimates from Acemoglu and Restrepo (2017b).
Using a difference-in-difference strategy, the previous authors have estimated the effect
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(a) Robots (Acemoglu and Restrepo, 2017b) (b) Chinese Imports (Chetverikov, Larsen and Palmer, 2016)

Figure 1: Semi-Elasticity of wages, δ ln w(z)
δy∗m

× 100, across quantiles of US wage distribution.

of industrial robots, defined as “an automatically controlled, reprogrammable, and mul-
tipurpose [machine]” on different quantiles of the wage distribution between 1990 and
2007 across US commuting zones. We interpret their estimates as the semi-elasticity of
wages with respect to robots, ηAR(z) ' δ ln w̄(z)

δy∗m
|δG∗=0, where y∗m is expressed as number

of robots per thousand workers. These estimates are reported in Figure 1a.
Under the previous interpretation, the elasticity that we are interested in is given by

δ ln ω(z)
δ ln y∗m

|δG∗=0 =
y∗m

∆ ln w̄(z)
× ∆ηAR(z), (9)

where ∆ ln w̄(z) and ∆ηAR(z) denote changes between consecutive deciles of the wage
distribution. In the United States in 2007, the number of robots per thousand workers is
slightly greater than one, y∗m ' 1.2, as reported by Acemoglu and Restrepo (2017b). This
leads to an average elasticity δ ln ω(z)

δ ln y∗m
|δG∗=0 across deciles around 0.5%.

Given estimates of the previous elasticities, the only additional information required
to evaluate the optimal tax on robots given by equation (8) is: (i) the marginal income tax
rates, τ(z); (ii) the ratio of labor earnings, x̄(z), to total spending on robots, p∗my∗m; and
(iii) the Hicksian and Marshallian labor supply elasticities, εH(z) and εM(z). Table E.1 in
Appendix E.2 describes how we obtain estimates each of these variables. For our baseline
computation, we use US statutory marginal tax rates, as reported in Guner, Kaygusuz
and Ventura (2014), and US labor earnings from the World Wealth and Income Database
together with US spending on robots from Graetz and Michaels (2018). This leads to a
ratio of total labor earnings to total spending on robots equal to 245. Finally, we set the
Hicksian labor supply elasticities equal to 0.5, consistent with Chetty (2012), and impose
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Baseline εM = 0 Effective τ Fitted δ ln w̄
δy∗m

Fitted δ ln ω
δ ln y∗m

(1) (2) (3) (4) (5)
Robots Tax:

t∗m 4.28% 6.42% 3.83% 5.38% 4.49%
Chinese Imports Tax:

t∗m 0.07% 0.10% 0.12% 0.02% 0.19%

Table 1: Optimal Taxes on Robots and Chinese Imports
Notes: Column (1) reports the optimal taxes on robots and Chinese imports obtained from equation (8)
under our baseline calibration. Column (2)-(5) report the same taxes using instead high values of the labor
supply elasticities εH and εM, effective marginal tax rates τ(z), fitted values of the semi-elasticities δ ln w̄

δy∗m
and elasticities δ ln ω

δ ln y∗m
, respectively, as further described in Appendix E.

the same value for the Marshallian labor supply elasticity.
Column (1) of Table 1 reports the value of the optimal tax on robots under our baseline

assumptions. Despite the negative impact of robots on wage inequality documented by
Acemoglu and Restrepo (2017b), it is fairly small with t∗m ' 4.28%. By Slutsky, if leisure
is a normal good, εM(z) ≤ εH(z); so setting εM(z) = εH(z) = 0.5 would bias downward
our estimate of the optimal tax on robots. Column (2) of Table 1 considers the extreme
case in which we instead set εM(z) = 0. This leads to t∗m ' 6.42%. We also obtain
similar estimates when instead of using statutory marginal tax rates, we use the effective
marginal rates reported in Guner, Kaygusuz and Ventura (2014), as can be seen from
Column (3). Lastly, we explore the extent to which mismeasurement in the semi-elasticity
of wages, δ ln w̄(z)/δy∗m, or the associated elasticity of relative wages, δ ln ω(z)/δ ln y∗m,
may be driving our conclusions. To do so, we start by projecting δ ln w̄(z)/δy∗m on a
flexible polynomial, as further described in Appendix E.2, and then use the fitted values
to compute δ ln ω(z)/δ ln y∗m using equation (9). As shown in Column (4), the optimal
tax on robots is only slightly higher than in our baseline. Our final exercise, in Column
(5), directly projects the elasticity of relative wages δ ln ω(z)/δ ln y∗m from our baseline
computations on a flexible polynomial before implementing equation (8). In this case, the
tax on our robots goes down to t∗m ' 4.49%.

5.3 Quantitative Example (II): Chinese Imports

Our second example focuses on Chinese imports. Like in the case of robots, we propose to
use estimates obtained from a difference-in-difference strategy as a proxy for the elasticity
that we are interested in, δ ln ω(z)

δ ln y∗m
|δG∗=0. Using the same empirical strategy as in Autor,

Dorn and Hanson (2013), Chetverikov, Larsen and Palmer (2016) have estimated the effect
on log wages of a $1,000 increase in Chinese imports per worker at different percentiles
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of the wage distribution, as described in Figure 1b. Following the same approach as in
the case of robots, we can transform the previous semi-elasticities into elasticities using
y∗m ' 2.2 as the value of Chinese imports, in thousands of US dollars, per worker for the
United States in 2007.

Interestingly, the average value of the relative wage elasticity, δ ln ω(z)
δ ln y∗m

|δG∗=0, is of the
same order of magnitude as the one implied by the estimates of Acemoglu and Restrepo
(2017b), around 0.5%. Compared to the robot example, however, the ratio of total labor
earnings to total Chinese imports in 2007 is only 26.4, an order of magnitude smaller than
the ratio to total spending on robots This leads to an optimal tax on Chinese imports
that is even smaller than the tax on robots in our baseline computation, t∗m ' 0.07%, as
reported in Column (1) of Table 1, and remains an order of magnitude smaller in all our
sensitivity exercises, as can be seen in Columns (2)-(5).

6 Comparative Statics

Our final results focus on comparative static issues in a special case of the environment
presented in Section 3 where equilibrium variables and optimal taxes can be solved for in
closed-form. In this environment, we first study how optimal taxes on new technologies
vary with technological progress. We then explore how the previous taxes vary with
social preferences, both when income taxes are set optimally and when they are fixed.

6.1 A Simple Economy with Heterogeneous Households and Machines

There is one final good, indexed by f , and one intermediate good, indexed by m, which
could be a robot produced domestically or a machine imported from abroad.

Preferences. Households have one-dimensional skills θ, uniformly distributed over [0, 1],
and quasi-linear preferences,

U(θ) = C(θ)− (n(θ))1+1/ε

1 + 1/ε
, (10)

with C(θ) the consumption of the unique final good, which we use as our numeraire,
p f = p∗f = 1, and ε the constant labor supply elasticity.
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Technology. Old technology firms produce the final good, y f ≥ 0, using workers, n ≡
{n(θ)}, and machines, ym ≤ 0, as an input. Their production set is given by

G(y f , ym, n) = y f − max
{ỹm(θ)}

{
ˆ

g(ỹm(θ), n(θ); θ)dF(θ)|
ˆ

ỹm(θ)dF(θ) ≤ −ym}, (11)

with g(ỹm(θ), n(θ); θ) a Cobb-Douglas production function,

g(ỹm(θ), n(θ); θ) = exp(α(θ)) · ( ỹm(θ)

β(θ)
)β(θ)(

n(θ)
1− β(θ)

)1−β(θ), (12)

where ỹm(θ) represents the number of machines combined with workers of type θ to
produce the final good, α(θ) ≡ α ln(1−θ)

β ln(1−θ)−1 , and β(θ) ≡ β ln(1−θ)
β ln(1−θ)−1 , with α, β > 0. New

technology firms produce machines, y∗m ≥ 0, using the final good, y∗f ≤ 0,

G∗(y∗f , y∗m; φ) = φy∗f + y∗m, (13)

where φ measures the productivity of machine producers.

Equilibrium Wage Schedule. Let pm and p∗m denote the price of robots faced by old and
new technology firms. Profit maximization by new technology firms implies

p∗m = 1/φ,

whereas profit maximization by old technology firms implies

w(pm; θ) = (1− θ)−1/γ(pm),

with γ(pm) ≡ 1/(α − β ln pm). Under the restriction that γ(pm) > 0, which we main-
tain throughout, wages are increasing in θ and Pareto distributed with shape parameter
equal to γ(pm) and lower bound equal to 1. Note that since workers’ skill θ is uniformly
distributed over [0, 1], wages are strictly increasing in θ, and labor supplies are strictly in-
creasing in wages, the index θ also corresponds to a worker’s quantile in the distribution
of earnings.

By construction, more skilled workers tend to use machines relatively more, since
β(θ) is increasing in θ. So an increase in the price of machines tends to lower their wages
relatively more, which decreases inequality,

d ln ω(θ)

d ln pm
= −d ln γ(pm)

d ln pm
= −βγ(pm) < 0.
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Here, because of additive separability in production, machines directly affect inequality
by affecting the relative marginal products of workers of different skills, but not indirectly
through further changes in their relative labor supply, as in Stiglitz (1982).

Social Welfare. The government aims to maximize a linear social welfare function,

W(U) =

ˆ
U(θ)dΛ(θ), (14)

Λ(θ) = λ + θ(1− λ). (15)

The social preference parameter λ ∈ [0, 1] controls the government’s preference for re-
distribution. At one extreme, λ = 0, Pareto weights are uniformly distributed, and the
government is utilitarian. At the other extreme, λ = 1, the distribution of Pareto weights
is a Dirac at θ = 0, and the government is Rawlsian.

6.2 Technological Progress and Technology Regulation

Our first comparative static exercise studies how the optimal tax on machines t∗m varies
with the productivity of machine produces φ. For comparative static purposes, a limita-
tion of our previous formulas is that they involve the entire schedule of marginal income
tax rates. These are themselves endogenous objects that will respond to changes in φ.
In Online Appendix F.1, we demonstrate how to solve for τ(θ) and obtain the following
formula for the optimal tax on machines,

t∗m
1 + t∗m

=

ε
ε+1

d ln ω
d ln y∗m

τ∗

1− ε
ε+1

d ln ω
d ln y∗m

τ∗
1− sm

sm
, (16)

where the elasticity of relative wages, d ln ω
d ln y∗m

≡ −βγ(pm)
∂ ln pm

∂ ln |ym(pm,n)| , is now constant

across agents; τ∗ ≡ ε+1
ε+1+εγ(pm)/λ

corresponds to the optimal marginal tax rate that would
be imposed in the absence of a tax on machines, as in Diamond (1998), Saez (2001), and
Scheuer and Werning (2017); and sm ≡ pmy∗m´

x(θ)dF(θ)+pmy∗m
measures the share of machines in

gross output. After expressing the three previous statistics, d ln ω
d ln y∗m

, τ∗, and sm, as functions
of t∗m and φ, we can apply the Implicit Function Theorem to determine the monotonicity of
the optimal tax on machines, as we do in Online Appendix F.2. This leads to the following
proposition.

Proposition 4. In a simple economy where equations (10)-(15) hold, the optimal tax on machines
t∗m is decreasing with the productivity φ of new technology firms.
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By construction, more machines always increase inequality in this simple economy,
d ln ω
d ln y∗m

> 0. So one should always tax new technology firms. For comparative static pur-
poses, however, the relevant question is whether this effect gets exacerbated as the new
technology improves. Here, one can check that ∂

∂φ
d ln ω
d ln y∗m

< 0 both because relative wages

are becoming less responsive to the price of machines, ∂
∂φ |

d ln ω
d ln y∗m

| < 0, and because the

demand for machines is becoming more elastic, ∂
∂φ |

∂ ln pm
∂ ln |ym(pm,n)| | < 0, due to the increase

in the labor supply of high-skilled workers whose demand for machines is more elastic.
One can also check that these two effects dominate the increase in the marginal tax rate,
∂τ∗
∂φ > 0, in response to greater inequality. For a given share of machines sm, this im-

plies that the total fiscal externality associated with new machines decreases. Since the
share of machines increase with improvements in the new technology, ∂sm

∂φ > 0, the fiscal
externality per machine a fortiori decreases and so does the tax on machines.

As this simple example illustrates, cheaper robots may lead to a higher share of robots
in the economy, more inequality, but a lower optimal tax on robots. Likewise, more im-
ports and more inequality, in spite of the government having extreme distributional con-
cerns and imports causing inequality, may be optimally met with less trade protection.
This decline in t∗m does not derive from redistribution becoming more costly as the econ-
omy gets more open.18 Here, the elasticity of labor supply is fixed and the marginal tax
rate τ∗ increases with φ. This decline also does not derive from redistribution through
income taxation becoming more attractive. Everything else being equal, an increase in τ∗

raises the tax on imports. Rather the decline in t∗m predicted by Proposition 4 captures a
standard Pigouvian intuition: as φ increases, the total fiscal externality associated with
imports increases, but the marginal impact on fiscal revenues does not, leading to a lower
value for the optimal tax.

6.3 Social Preferences, Income Taxes, and Technology Regulation

Our second comparative static exercise studies how the optimal tax on machines varies
with the social preference parameter λ. We do so under two baseline scenarios. In the
first one, consistent with our earlier analysis, we assume that the government can choose
both the tax on machines tm and the income tax schedule T in order to maximize social
welfare. In the second scenario, we assume instead that income taxes are exogenously set
at T = Tc, with Tc a linear tax schedule with constant marginal tax rate τc ∈ [0, 1].

We refer to the taxes on machines associated with these two scenarios as the optimal

18This is the point emphasized by Itskhoki (2008) and Antras, de Gortari and Itskhoki (2017) in an econ-
omy where entrepreneurs can decide whether to export or not. This makes labor supply decisions more
elastic in an open economy, which may reduce redistribution at the optimum.
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and constrained optimal taxes, t∗m and tc
m, respectively. As before, the optimal tax on ma-

chines t∗m is given by equation (16). Under this scenario, since the government is at a full
optimum, t∗m is consistent with the formulas in either Propositions 1 or 2, as discussed in
Section 4.3. In contrast, when income taxes are exogenously set so that T = Tc 6= T∗, the
constrained optimal tax tc

m has to be derived exclusively using the formula in Proposition
1, since the variation underlying Proposition 2’s formula is no longer feasible. As shown
in Online Appendix F.3, the constrained optimal tax on machines can be expressed as

tc
m

1 + tc
m
=

[λ(1− τc)− τcε][1− (1 + ε)/γ(pm)]

2β(1 + ε) + 1− (1 + ε)/γ(pm)
, (17)

Using equations (16) and (17), one can establish our final analytical result, whose formal
proof can be found in Appendix F.3.

Proposition 5. In a simple economy where equations (10)-(15) hold, the optimal and constrained
optimal taxes on machines t∗m and tc

m are increasing with the social preference parameter λ.

Since more machines increase inequality, the more the government cares about the
poor, in the sense of a higher social preference parameter λ, the higher the tax on machines
will be. This is true regardless of whether or not non-linear income taxes are available. In
the case in which the income tax schedule is exogenously given, though, the constrained
optimal tax on machines tc

m may very well be a subsidy. From equation (17), we see that
tc
m < 0 if τc/(1− τc) > λ/ε, in which case the role of a subsidy on machines is to undo

the redistributional consequences of a too progressive income tax schedule.
To explore further how social preferences as well as inefficiencies in income taxes may

shape the tax on machines as well as its welfare consequences, we conclude with numer-
ical simulations. We start from a baseline economy that has no taxes on machines tm = 0,
a constant marginal income tax rate τc = 27%, a labor supply elasticity ε = 0.5, and tech-
nological parameters α = 0.57, β = 0.003, and φ = 1.19 We define the welfare gains from
optimal taxation as the gains of moving from (tm = 0, T = Tc) to (tm = t∗m, T = T∗),
whereas the welfare gains from constrained optimal taxation are equal to the gains of
moving from (tm = 0, T = Tc) to (tm = tc

m, T = Tc).
Figure 2 describes how the optimal and constrained optimal taxes on machines t∗m and

tc
m vary with social preferences, in Panel (a), as well as the welfare gains from optimal and

constrained optimal taxation, in Panel (b). To help interpret magnitudes, the x-axis does
not report λ itself, but rather the optimal marginal income tax rate τ∗ that a government

19This implies that the elasticity of the relative wage d ln ω/d ln y∗m is equal to 0.5%, as in the two previous
quantitative examples of Section 5, and the share of machines sm is equal to 2%, the average between the
shares in the robots and trade example from Section 5. See Appendix F.4 for details.
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Figure 2: Social Preferences, Income Taxes, and Technology Regulation
Notes: Panel (a) plots the optimal ad-valorem tax t∗m (in black) and the constrained optimal tax tc

m (in blue)
as a function of the optimal marginal income tax rate τ∗ ≡ ε+1

ε+1+εγ(1)/λ
. Panel (b) plots the welfare gains

from optimal taxation (in black) and constrained optimal taxation (in blue), both in percentage of initial
GDP. Preference and technological parameters are set such that ε = 0.5, α = 0.57, β = 0.003, and φ = 1.
Marginal income tax rate is set to τc = 27% when computing tc

m and associated welfare gains.

with social preference parameter λ ∈ [0, 1] and only access to income taxation would
have chosen. This amounts to a change of variable, with τ∗ ≡ ε+1

ε+1+εγ(1)/λ
.

In Panel (a), we see that the optimal tax on machines t∗m (in black) remains fairly stable
and small, going from t∗m = 0% in the utilitarian case τ∗ = 0 to t∗m = 5.43% when optimal
marginal income tax rate reaches τ∗ = 63% in the Rawlsian case. In contrast, the con-
strained optimal tax tc

m (in blue) is very sensitive to the underlying preference parameter,
going from tc

m = −11.39% when τ∗ = 0 to tc
m = 125.63% when τ∗ = 63%.20 This reflects

the fact that taxes on machines, and only taxes on machines, may be used as an imper-
fect instrument to achieve the same redistributional objectives. For the same reason, the
constrained optimal taxes on machines would be even larger in a baseline economy with-
out income taxes, τc = 0, and the constrained optimal subsidies even larger in a baseline
economy with substantial income taxes, τc = 63%, as can be seen from the upper and

20In the special case where the marginal income tax rate observed in the baseline economy reveals its
social preferences for redistribution in the sense that λ is such that τ∗ = τc = 27%, we also see from Panel (a)
that the fully and constrained optimal taxes on machines are very close: t∗m ' 2.28% and tc

m ' 2.26%. The
only source of discrepancy between the two taxes arises because at a full optimum, the income tax schedule
should be adjusted to take into account the fact that the tax on machines is non-zero, which the constrained
optimal tax ignores. Since the tax on machines is small, however, this extra round of adjustments in income
taxes has a minor impact on the value of t∗m relative to tc

m. Likewise, since the baseline economy is very close
to a full optimum for τ∗ = τc = 27% and tm = 0, one can check that using the formulas in Propositions 2
and 3, again ignoring that income taxes would have to be adjusted to reach the full optimum, leads to very
similar prescriptions: (tm)δŪ=0 ' 2.28% and (tm)δŪ=0,f.o.a ' 2.23%, as shown in Appendix F.4.
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lower blue dashed lines, respectively. In terms of welfare, though, Panel (b) shows that
the returns to such second-best interventions (in blue) are orders of magnitude smaller
than those of first-best interventions that would also reform income taxes (in black).

7 Concluding Remarks

How should government policy respond to technological change? Our answer is that
in second-best environments—where income taxation is available, but taxes on specific
factors are not—there is a case for taxing new technology firms, with each of our formulas
offering a precise answer to what optimal taxes on new technology firms should be as a
function of a few sufficient statistics.

Although our formulas differ in important ways, they all give center stage to changes
in the wage schedule. This reflects a general Pigouvian motive for optimal technology
regulation to correct distributional externalities. When one extra unit is produced using
the new technology, either in the form of a robot or imports from abroad, this has an
impact on the wage schedule that, in turn, affects distribution and social welfare; the
optimal tax asks agents to pay for these marginal effects.

Perhaps surprisingly, we have also provided an example showing that more robots or
more trade may go hand in hand with more inequality and lower taxes, despite robots or
trade being responsible for the rise in inequality, and governments having preferences for
redistribution. Although there is always a distributional externality to be corrected, the
marginal impact of either robots or trade is what matters for the magnitude of the tax, and
that marginal impact is always falling in this example. As a result, optimal taxes decrease
as the process of automation and globalization deepens and inequality increases.

While we have focused on automation and globalization, our tax formulas could be
used to shed light on a variety of salient social issues, from immigration to environmental
regulations, that involve the same basic trade-off between efficiency and redistribution.
We hope that our general theoretical analysis can help build bridges from existing empir-
ical estimates of the redistributional consequences of such shocks to their ultimate policy
implications.
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A Notation
Consider a function h : RK → RM such that

h(x1, ..., xK) = (h1(x1, ..., xK), ..., hM(x1, ..., xK)).

Throughout our appendix, we use the following notation

hxi(x1, ..., xK) ≡
∂h(x1, ..., xK)

∂xi
for all i = 1, ..., K,

hj,xi(x1, ..., xK) ≡
∂hj(x1, ..., xK)

∂xi
for all i = 1, ..., K and j = 1, ..., M,

Whenever there is no risk of confusion, we also drop arguments from functions so that, for in-
stance, h implicitly stands for h(x1, ..., xK).

B Section 2

B.1 Tasks in Old Technology
Our environment nests economies in which a final good is produced using a continuum of tasks.
To see this formally, consider an economy that produces a final good f using a continuum of tasks
indexed by j,

y f = g f ({y(j)}),

with y(j) ≥ 0 the output of task j and g f a concave and constant returns to scale production
function. Each task, in turn, is produced using domestic workers and robots, as in Acemoglu and
Restrepo (2017a), or domestic and foreign workers, as in Grossman and Rossi-Hansberg (2008),

y(j) = gj(ym(j), {n(θ, j)}), for all j,

with ym(j) ≥ 0 the number of robots or foreign workers used to perform task j, n(θ, j) ≥ 0 the
number of domestic workers, and gj a concave and constant return to scale production function.
The production possibility frontier is then given by

G(y f , ym, n) = y f − g(ym, n)

with y f ≥ 0 the output of the final good, ym ≤ 0 the total amount of robots or foreign workers
demanded by old technology firms, and g such that

g(ym, n) = max
{y(j),ym(j),n(θ,j)}

g f ({y(j)})

subject to

y(j) ≤ gj(ym(j), {n(θ, j)}), for all j,

n(θ) f (θ) ≥
ˆ

n(θ, j)dj, for all θ,

−ym ≥
ˆ

ym(j)dj,
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with f (θ) the pdf associated with the distribution of types F. The homogeneity and convexity of
G follows from g f and gj being concave and constant returns.

B.2 Labor in New Technology
In Section 2, we have argued that it is without loss of generality to assume the new technology G∗

does not employ labor. Here, we provide the formal argument.
Suppose that the production sets associated with the old and new technology are such that

Ĝ(ŷ, n̂) ≤ 0,

Ĝ∗(ŷ∗, n̂∗) ≤ 0.

First, define

y =

(
ŷ
ŷ∗

)
.

Next, define G so that the set of (y, n) satisfying G(y, n) ≤ 0 coincides with the set of (y, n) for
which there exists n̂ and n̂∗ such that

Ĝ(ŷ, n̂) ≤ 0,

Ĝ∗(ŷ∗, n̂∗) ≤ 0,
n̂ + n̂∗ = n.

Last, define G∗ such that G∗(y∗) ≤ 0 is satisfied if and only if

y∗ =
(

ŷ
ŷ∗

)
is such that ŷ ≤ −ŷ∗.

C Section 3

C.1 Competitive Equilibrium with Taxes
We provide a formal definition of a competitive equilibrium with taxes.

Demand. Households maximize utility taking prices p, wages w, and the income tax schedule
T as given. Since preferences are weakly separable, the demand of any household θ is given by
the two-step problem

c(θ) ∈ argmaxc̃(θ){v(c̃(θ))|p · c̃(θ) ≤ w(θ)n(θ)− T(w(θ)n(θ))}, (C.1)

n(θ) ∈ argmaxñ(θ){u(C(p, w(θ)ñ(θ)− T(w(θ)ñ(θ))), ñ(θ))}, (C.2)

where C(p, r) ≡ maxc̃{v(c̃)|p · c̃ ≤ r} is the indirect subutility of a household facing prices p with
after-tax earnings r and · denotes the inner product of two vectors.21

21In Section 2, we have used C(θ) to denote the level of the subutility of household θ. For ease of
notation, we use C again here to denote the indirect subutility function, C(p, r). By definition, we therefore
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Supply. Firms maximize profits taking prices p and p∗ and wages w as given,

y, n ∈ argmaxỹ,ñ{p · ỹ−
ˆ

w(θ)ñ(θ)dF(θ) | G(ỹ, ñ) ≤ 0}, (C.3)

y∗ ∈ argmaxỹ∗{p∗ · ỹ∗| G∗(ỹ∗; φ) ≤ 0}. (C.4)

Market Clearing. Demand equals supply for all goods,
ˆ

ci(θ)dF(θ) = yi + y∗i for all i. (C.5)

Linear Taxation. Prices satisfy

pi = (1 + t∗i )p∗i for all i. (C.6)

Government’s Budget Constraint. The sum of taxes paid by new technology firms and in-
come taxes paid by households is zero,

∑
i

t∗i p∗i y∗i +
ˆ

T(w(θ)n(θ))dF(θ) = 0. (C.7)

Equilibrium. A competitive equilibrium with taxes (T, t∗) is an allocation c ≡ {c(θ)}, n ≡
{n(θ)}, y ≡ {yi}, y∗ ≡ {y∗i }, prices and wages p ≡ {pi}, p∗ ≡ {p∗i }, and w ≡ {w(θ)}, such that:

i. households maximize their utility, condition (C.1) and (C.2);

ii. firms maximize their profits, conditions (C.3) and (C.4);

iii. good markets clear, condition (C.5);

iv. prices satisfy the non-arbitrage condition (C.6);

v. the government’s budget is balanced, condition (C.7).

C.2 Wage Schedule
Let y(p, n) denote the supply of old technology firms, that is the solution to

maxỹ{p · ỹ | G(ỹ, n) ≤ 0}.

The first-order conditions of (C.3) imply a wage schedule w(p, n) ≡ {w(p, n; θ)} such that

w(θ) f (θ) = −Gn(θ)(y(p, n), n)/Gy1(y(p, n), n) for all θ.

have C(θ) = C(p, r(θ)), with r(θ) = w(θ)n(θ)− T(w(θ)n(θ)) the after-tax earnings of household θ.
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C.3 Government Problem
For any vector of consumption and labor supply, c ≡ {c(θ)} and n ≡ {n(θ)}, the utility of quantile
z ∈ [0, 1] is given by

Ū(z) = inf{u ∈ R|z ≤
ˆ

u(v(c(θ)),n(θ))≤u
dF(θ)}. (C.8)

For any y∗, construct p∗ such that

p∗i = G∗y∗i (y
∗; φ)/G∗y∗1 (y

∗; φ) for all i. (C.9)

Define the feasible set

Ω = {(c, n, y, y∗, p, p∗, w, T, t∗, Ū) such that equations (C.1)-(C.3), (C.5)-(C.6), and (C.8)-(C.9) hold}.

Noting that profit maximization by new technology firms, condition (C.4), is equivalent to (C.9)
and G∗(y∗; φ) = 0 and that, by Walras’ Law, the government’s budget constraint, condition (C.7),
necessarily holds if the other equilibrium conditions do, the problem of selecting a competitive
equilibrium with taxes that maximizes social welfare can then be expressed as

max
(c,n,y,y∗,p,p∗,w,T,t∗,Ū)∈Ω

W(Ū)

subject to
G∗(y∗; φ) = 0.

D Section 4

D.1 Proof of Lemma 1
Preliminaries. The next lemma will be used to reduce the dimensionality from θ to the per-
centile z in our optimality conditions.

Lemma 2. Suppose θ ∈ Θ ⊆ RK, ε ∈ R and the function w(θ, ε) is almost everywhere differentiable and
increasing in some θi, define

Z(W, ε) =

ˆ
w(θ,ε)≤W

dF(θ)

and let w̄(z, ε) denote the inverse of Z with respect to W. Then

w̄ε(z, ε) = E[wε(θ, ε) | w(θ, ε) = w̄(z, ε)].

Proof. Denote the inverse of W = w(θ, ε) for θi as θ̂(θ−i, W, ε). Then

Z(W, ε) =

ˆ
F(θ̂(θ−i, W, ε) | θ−i) dF(θ−i). (D.1)
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Since w(θ−i, θ̂(θ−i, W, ε), ε) = W it follows that

θ̂W(θ−i, W, ε) =
1

wθi(θ−i, θ̂(θ−i, W, ε), ε)
,

θ̂ε(θ−i, W, ε) = − wε(θ−i, θ̂(θ−i, W, ε), ε)

wθi(θ−i, θ̂(θ−i, W, ε), ε)
.

Since w̄(Z(W, ε), ε) = W it follows that

w̄ε(z, ε) = −w̄z(z, ε)Zε(w̄(z, ε), ε) = − 1
ZW(w̄(z, ε), ε)

Zε(w̄(z, ε), ε).

Using these expressions and differentiating (D.1) gives

w̄ε(z, ε) =
1´ f (θ̂(θ−i ,w̄(z,ε),ε)|θ−i)

wθi (θ−i ,θ̂(θ−i ,w̄(z,ε),ε),ε)
dF(θ−i)

×
ˆ

f (θ̂(θ−i, w̄(z, ε), ε) | θ−i)

wθi(θ−i, θ̂(θ−i, w̄(z, ε), ε), ε)
wε(θ−i, θ̂(θ−i, w̄(z, ε), ε), ε) dF(θ−i).

To see that this establishes the desired equality, define

G(W | θ−i) = F(θ̂(θ−i, W, ε) | θ−i)

the c.d.f. for W = w(θ, ε) conditional on θ−i; differentiating, one sees that

g(W | θ−i) =
f (θ̂(θ−i, W, ε) | θ−i)

wθi(θ−i, θ̂(θ−i, W, ε), ε)

represents the associated conditional density. Noting that

g(θ−i |W)dθ−i =
g(W | θ−i)dF(θ−i)´
g(W | θ−i)dF(θ−i)

the result then follows: w̄ε(z, ε) = E[wε(θ, ε) | w(θ, ε) = w̄(z, ε)].

The following simple corollary will be employed below, for any differentiable function N(w, ε)
define n(θ, ε) = N(w(θ, ε), ε) and n̄(z, ε) = N(w̄(z, ε), ε) then

n̄ε(z, ε) = E[nε(θ, ε) | w(θ, ε) = w̄(z, ε)].

Proof of Lemma 1. We engineer a variation that ensures all the equilibrium conditions are met
except G∗(y∗; φ) = 0 and evaluate how this variation affects welfare W(Ū) and G∗(y∗; φ).

The new tax schedule is given by

t∗i (ε) = t∗i + εt̂∗i for all i,

T(x, ε) = T(x) + εT̂(x) for all x ≥ 0,

for some arbitrary vector of new technology taxes, t̂∗, income tax schedule, T̂, and ε ∈ R. We let
{c(θ, ε)}, {n(θ, ε)}, y(ε) ≡ {yi(ε)}, and y∗(ε) ≡ {y∗i (ε)} denote the associated equilibrium allo-
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cation and we let p(ε) ≡ {pi(ε)}, p∗(ε) ≡ {p∗i (ε)} and {w(θ, ε)} denote the associated prices and
wages. They are given by conditions (C.1)-(C.3) and (C.5)-(C.9). The only equilibrium condition
that is not imposed is G∗(y∗(ε); φ) = 0.

Define the Lagrangian
L =W(Ū)− γG∗(y∗; φ)

with Lagrange multiplier γ > 0. A necessary condition for such a feasible variation not to improve
welfare is that

dW({Ū(z, ε)})
dε

∣∣∣∣
ε=0
− γ

dG∗(y∗(ε); φ)

dε

∣∣∣∣
ε=0

= 0. (D.2)

We now compute each of these derivatives. Let R(x, ε) ≡ x − T(x, ε) denote the retention func-
tion associated with the income tax schedule T(x, ε). Recall that since households have identical
preferences, all households of a given quantile z of the utility distribution have wage w̄(z, ε) and
achieve utility

Ū(z, ε) = maxñ(θ)u(C(p(ε), R(w̄(z, ε)ñ(θ), ε)), ñ(θ)),

with labor supply n̄(z, ε), consumption, c̄(z, ε), and earnings, x̄(z, ε) ≡ w̄(z, ε)n̄(z, ε). Let Ūε(z, ε) ≡
∂Ū(z, ε)/∂ε denote the marginal change in utility at quantile z. The Envelope Theorem implies

Ūε(z, ε) = ūC(z, ε) C̄R(z, ε) [R̄x(z, ε)n̄(z, ε)w̄ε(z, ε) + R̄ε(z, ε)− c̄(z, ε) · pε],

with

ūC(z, ε) ≡ uC(C, n)|C=C(p(ε),R̄(z,ε)),n=n̄(z,ε) ,

C̄R(z, ε) ≡ CR(p, R)|p=p(ε),R=R̄(z,ε) ,

R̄(z, ε) ≡ R(x̄(z, ε), ε),
R̄x(z, ε) ≡ Rx(x, ε)|x=x̄(z,ε),ε ,

R̄ε(z, ε) ≡ Rε(x, ε)|x=x̄(z,ε),ε .

This further implies

dW({Ū(z, ε)})
dε

= (D.3)ˆ
∂W

∂Ū(z)
ūC(z, ε) C̄R(z, ε) [R̄x(z, ε)n̄(z, ε)w̄ε(z, ε)− c̄(z, ε) · pε + R̄ε(z, ε)] dz.

Now consider the change in the cost of resources used by the new technology,

dG∗(y∗(ε); φ)

dε
= ∑

i
G∗y∗i y∗i,ε.

Using equation (C.9) and good market clearing, this can be rearranged as

dG∗(y∗(ε); φ)

dε
= G∗y∗1{(p∗ − p) · y∗ε + p ·

ˆ
cε(θ, ε)dF(θ)− p · yε}. (D.4)
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From the first-order conditions associated with (C.3), we know that

p · ∂y(p, n)
∂pi

= 0 for all i,

p · ∂y(p, n)
∂n(θ)

= w(θ) for all θ.

It follows that

p · yε = p · [∑
i

∂y(p, n)
∂pi

pi,ε +

ˆ
∂y(p, n)

∂n(θ)
nε(θ, ε)dF(θ)] =

ˆ
w(θ)nε(θ, ε)dF(θ), (D.5)

From the budget constraint associated with (C.1), we also know that

d
dε

[p(ε) ·
ˆ

c(θ, ε)dF(θ)] =
ˆ

dR(w(θ, ε)n(θ, ε), ε)

dε
dF(θ).

It follows that

p ·
ˆ

cε(θ, ε)dF(θ) =−
ˆ

pε · c(θ, ε)dF(θ) +
ˆ
[Rε(w(θ, ε)n(θ, ε), ε) (D.6)

+ Rx(w(θ, ε)n(θ, ε), ε)
(
wε(θ, ε)n(θ, ε) + w(θ, ε)nε(θ, ε)

)]
dF(θ).

Combining (D.4)-(D.6) and using w(θ, ε)n(θ, ε) = x(θ, ε), we get

dG∗(y∗(ε); φ)

dε
= G∗y∗1

{
(p∗ − p) · y∗ε −

ˆ
pε · c(θ, ε)dF(θ)

+

ˆ
[Rε(x(θ, ε), ε) + Rx(x(θ, ε), ε)wε(θ, ε)n(θ, ε)− (1− Rx(x(θ, ε), ε))w(θ, ε)nε(θ, ε))]dF(θ)

}
.

Applying the corollary of Lemma 2, we have

n̄ε(z, ε) =

ˆ
nε(θ, ε) f (θ|w(θ, ε) = w̄(z, ε))dθ.

Thus we can rearrange the previous expression as

dG∗(y∗(ε); φ)

dε
= G∗y∗1{(p∗ − p) · y∗ε +

ˆ
[R̄ε(z, ε) + R̄x(z, ε)n̄(z, ε)w̄ε(z, ε)− c̄(z, ε) · pε]dz

−
ˆ
(1− R̄x(z, ε))w̄(z, ε)n̄ε(z, ε)]dz}. (D.7)

Substituting equations (D.3) and (D.7) into equation (D.2), we obtain

(p∗ − p) · y∗ε −
ˆ

τ(z)w̄(z)n̄ε(z)dz

=

ˆ
[λ̄(z)− 1][(1− τ(z))n̄(z)w̄ε(z)− T̄ε(z)− c̄(z) · pε]dz,
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with

λ̄(z) ≡ (∂W/∂Ū(z))|ε=0 ūC(z, 0) C̄R(z, 0))
γG∗y∗1 (y

∗(0))
,

τ(z) ≡ 1− R̄x(z, 0),
T̄ε(z) ≡ −R̄ε(z, 0),

as well as the obvious short hand notation, n̄(z) ≡ n̄(z, 0) etc.

D.2 Proof of Proposition 1
Consider a first variation such that

t∗i (ε) = t∗i + εt̂∗i for all i,
T(x, ε) = T(x)− ετ for all x ≥ 0,

In the proof of Lemma 1, we have established that

dG∗(y∗(ε); φ)

dε
= G∗y∗1{(p∗ − p) · y∗ε +

ˆ
[R̄ε(z, ε) + R̄x(z, ε)n̄(z, ε)w̄ε(z, ε)− c̄(z, ε) · pε]dz

−
ˆ
(1− R̄x(z, ε))w̄(z, ε)n̄ε(z, ε)]dz}.

For the uniform lump-sum transfer, τ = R̄ε(z, ε) for all z, to maintain the government’s budget
balance, it must therefore satisfy

τ = −{(p∗− p) · y∗ε +
ˆ
[R̄x(z, ε)n̄(z, ε)w̄ε(z, ε)− c̄(z, ε) · pε]dz−

ˆ
(1− R̄x(z, ε))w̄(z, ε)n̄ε(z, ε)]dz}.

Substituting this expression for −δT(z) in equation (1), we obtain

[

ˆ
{(p∗ − p) · y∗ε −

ˆ
(1− R̄x(z, ε))w̄(z, ε)n̄ε(z, ε)]dz}]

=

ˆ
[

λ̄(z)´
λ̄(v)dv

− 1][(1− τ(z))n̄(z) w̄ε(z, ε)− c̄(z) · pε] dz,

where we again use the short hand notation, n̄(z) ≡ n̄(z, 0) etc. Now pick t̂∗ ≡ {t̂∗i } such that
y∗1,ε, y∗i,ε 6= 0 and y∗j,ε = 0 for all j 6= 1, i. The previous expression implies

pi − p∗i

=

ˆ [
(1− λ̄(z)´

λ̄(v)dv
)
(
(1− τ(z))n̄(z)

δw̄(z)
δy∗i

|δT=0 − c̄(z)
δp
δy∗i
|δT=0

)
− τ(z)w̄(z)

δn̄(z)
δy∗i
|δT=0

]
dz.
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D.3 Proof of Proposition 2
Consider a variation

t∗i (ε) = t∗i + εt̂∗i for all i,

T(x, ε) = T(x) + εT̂(x) for all x ≥ 0,

such that Ūε(z, ε) = 0 for all z. From Lemma 1, we know that

(p∗ − p) · y∗ε −
ˆ

τ(z)w̄(z)n̄ε(z) dz

=

ˆ
(λ̄(z)− 1)[(1− τ(z))n̄(z) w̄ε(z)− c̄(z) · pε − Tε(x̄(z))] dz,

with the short hand notation, n̄(z) ≡ n̄(z, 0) etc. In the proof of Lemma 1, we have already
established that

Ūε(z) = ūC(z) C̄R(z)[(1− τ(z))n̄(z) w̄ε(z)− c̄(z) · pε − Tε(x̄(z))].

It follows that if Ūε(z) = 0 for all z, then

(p∗ − p) · y∗ε =

ˆ
τ(z)w̄(z)n̄ε(z) dz. (D.8)

Let us now compute n̄ε(z). We use the following definitions,

C̄(z, ε) ≡ C(p(ε), R(w̄(z, ε)n̄(z, ε), ε)),

MRS(C, n) ≡ − un(C, n)
uC(C, n)

.

Note that for any household at the quantile z of the utility distribution, we must have

Ū(z, ε) = maxz′u(C̄(z′, ε), n̄(z′, ε)
w̄(z′, ε)

w̄(z, ε)
).

By the Envelope Theorem, this further implies

Ūz(z, ε) = −ūn(z, ε)ω(z, ε)n̄(z, ε), (D.9)

with

ūn(z, ε) ≡ un(C̄(z, ε), n̄(z, ε)),
ω(z, ε) ≡ w̄z(z, ε)/w̄(z, ε).

Since Ūε(z) = 0 for all z, we must also have Ūzε(z) = 0 for all z. Taking log and differentiating
(D.9) with respect to ε we therefore obtain

ūnε(z)
ūn(z)

+
ωε(z)
ω(z)

+
n̄ε(z)
n̄(z)

= 0. (D.10)
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Next let us show that if Ūε(z) = 0 for all z, then

ūnε(z)
ūn(z)

=
1

εC(z)
n̄ε(z)
n̄(z)

, (D.11)

where εC(z) ≡ MRS(C̄(z),n̄(z))
MRSn(C̄(z),n̄(z))n̄(z)

denotes the consumption-compensated elasticity of labor supply.
Differentiating ūn(z, ε) with respect to ε, we get

ūnε(z)
ūn(z)

=
unC

un
C̄ε(z, ε) +

unn

un
n̄ε(z).

Using the fact that Ūε(z) = uCC̄ε(z, ε) + unn̄ε(z) = 0, we can rearrange the previous expression as

ūnε(z)
ūn(z)

=

[
−unC

uC
+

unn

un

]
n̄ε(z).

Noting that ∂ ln MRS
∂ ln n = unn

un
− unC

uC
, we obtain (D.11). Combining (D.10) and (D.11), we then get

n̄ε(z)
n̄ε

= − εC(z)
1 + εC(z)

ωε(z)
ω(z)

.

This can be rearranged equivalently as

n̄ε(z)
n̄ε

= − εH(z)
1 + εM(z)

ωε(z)
ω(z)

,

where εH(z) ≡ 1
n̄(z)MRSC+n̄(z)MRSn/MRS and εM(z) ≡ 1−n̄(z)MRSC

n̄(z)MRSC+n̄(z)MRSn/MRS denote the Hicksian
and Marshallian labor supply elasticities, respectively.

Substituting for n̄ε(z) into (D.8), we obtain

(p∗ − p) · y∗ε = −
ˆ

τ(z)w̄(z)n̄(z)
εH(z)

1 + εM(z)
ωε(z)
ω(z)

dz.

Pick T̂ and t̂∗ ≡ {t̂∗i } such that, in addition to Ūε = 0, y∗1,ε, y∗i,ε 6= 0 and y∗j,ε = 0 for all j 6= 1, i. Then

pi − p∗i =

ˆ
τ(z)w̄(z)n̄(z)

εH(z)
εM(z) + 1

1
ω(z)

δω(z)
δy∗i

|δŪ=0 dz.

E Section 5

E.1 Proof of Proposition 3
Denote (pε)δŪ=0, ({wε(θ)})δŪ=0, and (y∗ε)δŪ=0 the change in prices, wages and output by new
technology firms associated with the variation δŪ = 0. Now consider an alternative variation

t∗i (ε) = t∗i + εt̂∗i for all i,

T(x, ε) = T(x) + εT̂(x) for all x ≥ 0,
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with t̂ set such that pε = (pε)δŪ=0 and T̂ set such that G∗ε (y∗) = 0. We do not impose any other
restriction on T̂. We refer to such a variation as δG∗ = 0.

Our goal is to show that if |εH(z)|, |εM(z)| < ε̄, then

(ωε(z))δG∗=0 = (ωε(z))δŪ=0 + O(ε̄);
(y∗ε)δG∗=0 = (y∗ε)δŪ=0 + O(ε̄).

The two previous equations imply δ ln ω(z)
δ ln y∗i

|δG∗=0 = δ ln ω(z)
δ ln y∗i

|δŪ=0 +O(ε̄). Proposition 3 then follows
from this observation and the fact that εH(z) = O(ε̄) and εM(z) = O(ε̄). Our proof proceeds in
three steps.

Step 1: If |εH(z)|, |εM(z)| < ε̄, then for any variation, n̄ε(z) = O(ε̄) for all z.
For any z, the household labor supply solves

MRS(C̃(w̄(z, ε)n̄(z, ε), ε), n̄(z, ε)) = w̄(z, ε)C̃x(w̄(z, ε)n̄(z, ε), ε), (E.1)

with C̃(x, ε) ≡ C(p(ε), R(x, ε)). Differentiating the previous expression with respect to ε we get

n̄ε(z) =
(C̃xxw̄(z)n̄(z) + C̃x)w̄ε(z) + C̃xεw̄(z)−MRSC(C̃xn̄(z)w̄ε(z) + C̃ε)

MRSCC̃xw̄(z) + MRSn − C̃xxw̄2(z)
.

Using εH(z) ≡ 1
n̄(z)MRSC+n̄(z)MRSn/MRS , εM(z) ≡ 1−n̄(z)MRSC

n̄(z)MRSC+n̄(z)MRSn/MRS , and MRS = w̄(z)C̃x, we
can rearrange the previous expression as

n̄ε(z)
n̄

=
εH(z)(

C̃xxw̄(z)n̄(z)
C̃x

w̄ε(z)
w̄(z) + C̃xε

C̃x
− C̃ε

C̃xw̄(z)n̄(z) ) + εM(z)( w̄ε(z)
w̄(z) + C̃ε

C̃xw̄(z)n̄(z) )

1− εH(z)
C̃xxw̄(z)n̄(z)

C̃x

. (E.2)

By assumption, we know that εH(z) = O(ε̄) and εM(z) = O(ε̄). Combining this observation with
equation (E.2), we obtain n̄ε(z) = O(ε̄) for all z.

Step 2: If |εH(z)|, |εM(z)| < ε̄, then (ωε(z))δG∗=0 = (ωε(z))δŪ=0 + O(ε̄) for all z.
By definition, we know that w(θ, ε) = w(p(ε), {n(θ, ε)}). Differentiating the previous expres-

sion, we get

wε(θ) = wp(θ) · pε +

ˆ
wn(θ′)(θ)nε(θ

′)dF(θ′) for all θ.

Given Step 1, we must therefore have wε(θ) = wp(θ) · pε + O(ε̄). Since (pε)δG∗=0 = (pε)δŪ=0,
this further implies that (wε(θ))δG∗=0 = (w(θ))δŪ=0 + O(ε̄) for all θ. Step 2 follows from this
observation.

Step 3: If |εH(z)|, |εM(z)| < ε̄, then (y∗ε)δG∗=0 = (y∗ε)δŪ=0 + O(ε̄).
Since preferences are quasi-homothetic, there exist a(p) and b(p) such that

c̄(z, ε) = a(p(ε)) + b(p(ε))C̄(z, ε) for all z.
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We can therefore express output by new technology firms as

y∗(ε) = a(p(ε)) + b(p(ε))
ˆ

C̄(z, ε)dz− y(p(ε), {n(θ, ε)}).

Differentiating implies that for any variation,

y∗ε =

[ap(p) + bp(p)
ˆ

C̄(z, ε)dz− yp]pε −
ˆ

yn(θ′)nε(θ
′)dF(θ′) + b(p)

ˆ
C̄ε(z, ε)dz

= [ap(p) + bp(p)
ˆ

C̄(z, ε)dz− yp]pε + b(p)
ˆ

C̄ε(z, ε)dz + O(ε̄), (E.3)

where the second equality derives from Step 1.
Next we show that ([

´
C̄ε(z, ε)dz)δG∗=0 = O(ε̄). We use the same type of arguments as in the

proof of Lemma 1. Start from

G∗ε = (p∗ − p) · y∗ε + p ·
ˆ

c̄ε(z)dz− p · yε = 0. (E.4)

Since firms maximize profits, we know that p · [yp(p, {n(θ)})]pε = 0 and p · [yn(θ′)(p, {n(θ)})] =
w(θ′), which implies

p · yε =

ˆ
w(θ)nε(θ)dF(θ) = O(ε̄), (E.5)

where the second equality again follows from Step 1. Likewise, since consumers minimize expen-
diture, we know that p · [ap(p) + bp(p)C̄(z, ε)]pε = 0, which implies

p ·
ˆ

cε(θ, ε)dF(θ) = [p · b(p)][
ˆ

C̄ε(z, ε)dz]. (E.6)

From Proposition 2, we also know that

(p∗ − p) · y∗ε = ∑
i

[ˆ
τ(z)w̄(z)n̄(z)

εH(z)
εM(z) + 1

δ ln ω(z)
δ ln y∗i

|δŪ=0 dz
]

y∗i,ε = O(ε̄), (E.7)

where the second equality follows from εH(z) = O(ε̄) and εM(z) = O(ε̄). Combining equations
(E.4)-(E.7)), we get (ˆ

C̄ε(z, ε)dz
)

δG∗=0
= O(ε̄). (E.8)

Finally, we show that (
´

C̄ε(z, ε)dz)δŪ=0 = O(ε̄). Differentiating Ū(z, ε) = u(C̄(z, ε), n̄(z, ε)) and
imposing Ūε(z, ε) = 0 implies

(C̄ε(z, ε))δŪ=0 = −(un/uC)n̄ε = O(ε̄) for all z,

where the second equality derives from Step 1. The previous expression, in turn, implies(ˆ
C̄ε(z, ε)dz

)
δŪ=0

= O(ε̄). (E.9)

Combining equations (E.3), (E.8), and (E.9) with the fact that (pε)δG∗=0 = (pε)δŪ=0, we conclude
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that (y∗ε)δG∗=0 = (y∗ε)δŪ=0 + O(ε̄).

E.2 Quantitative Implementation of Optimal Tax on Robots
To implement the formula in Proposition 3 in the case of robots, we start from the definition
ω(z) = d ln w̄(z)/dz to express δ ln ω(z)

δ ln y∗m
|δG∗=0 as a function of δ ln w̄(z)

δy∗m
,

δ ln ω(z)
δ ln y∗m

|δG∗=0 =
y∗m

ω(z)
δω(z)
δy∗m

|δG∗=0 =
y∗m

ω(z)
d
dz

(
δ ln w̄(z)

δy∗m

)
|δG∗=0.

Substituting into equation (8), we then obtain

t∗m '
ˆ

τ(z)
x̄(z)
p∗my∗m

εH(z)
εM(z) + 1

y∗m
ω(z)

d
dz

(
δ ln w̄(z)

δy∗m

)
|δG∗=0 dz.

We interpret Acemoglu and Restrepo’s (2017b) estimates ηAR(q) of the semi-elasticity of wages
with respect to the number of robots across different deciles q ∈ D ≡ {10, 20, ..., 90} (from their
long-differences specification, in their Figure 13) as the empirical counterpart of

(
δ ln w̄(q)

δy∗m

)
|δG∗=0

for households at a decile q of the US income distribution.22 Using a discrete approximation, we
can therefore express the optimal tax on robots as

t∗m ' ∑
q∈D/{10}

τ(q)
x̄(q)
p∗my∗m

εH(q)
εM(q) + 1

y∗m∆ηAR(q)
∆ ln w̄(q)

,

where τ(q) denotes the marginal tax rate faced by households between the (q − 10)-th and q-th
deciles of the income distribution; x̄(q) denotes the labor earnings of individuals between the
same two deciles; εH(q) and εM(q) denote their Hicksian and Marshallian labor supply elasticities
of households at the q-th decile of the income distribution; and ∆ denotes differences between
consecutive quantiles, i.e. ∆ηAR(q) = ηAR(q)− ηAR(q− 10) and ∆ ln w̄(q) = ln w̄(q)− ln w̄(q−
10). Note that since Acemoglu and Restrepo’s (2017b) estimates are not available for q = 0 and
100, we omit the bottom and top deciles from our approximation; this is equivalent to setting
∆ηAR(10) = ∆ηAR(100) = 0.

Ignoring differences in labor supply elasticities across quantiles and approximating changes
in log-wages by changes in log-earnings, we can finally compute the optimal tax on robots as

t∗m '
εH

εM + 1
1− sm

sm
∑

q∈D/{10}
τ(q) s̄(q)

∆ ln ω(q)
∆ ln y∗m

, (E.10)

22Figure 13 in Acemoglu and Restrepo (2017b) reports the reduced-form coefficient obtained from re-
gressing changes in wages on the exogenous exposure to robots (measured as adoption of industrial robots
in nine other European economies from 1993 to 2007). To go from the semi-elasticity with respect to exoge-
nous exposure to robots to the semi-elasticity with respect to US exposure, we divide these coefficients by
the first-stage coefficient, equal to 2, obtained from regressing US exposure on exogenous exposure.
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Variables Values Source

Panel A: Baseline
εH, εM 0.5 Chetty (2012)

sm 0.4% Graetz and Michaels (2018)
{τ(q)} {0, 0.07, 0.07, 0.07, 0.14, 0.14, 0.14, 0.21, 0.27} Guner et al. (2014)
{s̄(q)} {0, 0.02, 0.03, 0.04, 0.06, 0.08, 0.1, 0.12, 0.16} World Wealth and

Income Database
{∆ ln ω(q)

∆ ln y∗m
× 100} {0.16, 0.82, 0.22, 0.20, 0.21, 0.73, 1.30, 0.06} Acemoglu and Restrepo (2017b)

Panel B: Inelastic Marshallian labor supply
εM 0 n.a.

Panel C: Effective US marginal tax rates
{τ(q)} {0, 0.07, 0.07, 0.08, 0.12, 0.12, 0.15, 0.17, 0.21} Guner et al. (2014)

Panel D: Fitted wage semi-elasticity
{∆ ln ω(q)

∆ ln y∗m
× 100} {0.26, 0.43, 0.40, 0.38, 0.40, 0.49, 0.64, 0.75} Acemoglu and Restrepo (2017b)

Panel E: Fitted relative wage elasticity
{∆ ln ω(q)

∆ ln y∗m
× 100} {0.45, 0.23, 0.25, 0.40, 0.59, 0.72, 0.68, 0.37} Acemoglu and Restrepo (2017b)

Table E.1: Quantitative Implementation of Optimal Tax on Robots
Notes: Panels A-E report the values used to compute the optimal tax on robots in Columns (1)-(5), respec-
tively, of Table 1. All variables are set to their baseline values unless stated otherwise.

with sm, s̄(q), and ∆ ln ω(q)/∆ ln y∗m defined as

sm ≡
p∗my∗m

p∗my∗m + x̄
,

s̄(q) ≡ x̄(q)
x̄

,

∆ ln ω(q)
∆ ln y∗m

≡ y∗m∆ηAR(q)
∆ ln s̄(q)

,

where x̄ ≡ ∑q∈D∪{100} x̄(q) denotes total labor earnings. Table E.1 reports the value of all the
variables entering equation (E.10). As mentioned in Section 5.2, our baseline computation (Panel
A) uses: Hicksian labor supply elasticities from Chetty (2012); spending on robots from Graetz and
Michaels (2018); statutory marginal tax rates from Guner et al. (2014); and shares of labor earnings
by deciles in the United States from the World Wealth and Income Database. The elasticity of
relative wages ∆ ln ω(q)/∆ ln y∗m for each decile is computed using ∆ ln ω(q)

∆ ln y∗m
≡ y∗m∆ηAR(q)

∆ ln s̄(q) , with y∗m '
1.2 and ∆ηAR(q) from Acemoglu and Restrepo (2017b) and ∆ ln s̄(q) from the World Wealth and
Income Database.

Our sensitivity exercises first set the Marshallian labor supply elasticity to zero (in Panel B) and
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then set the marginal income tax rates to their effective values, also from Guner et al. (2014) (in
Panel C). For the last two panels (Panels D and E), we use fitted values of the wage semi-elasticity
and relative wage elasticity, respectively. Specifically, for Panel D, we estimate via OLS,

ηAR(q) =
3

∑
k=0

βPanel D,kqk + errorPanel D(q),

and use η̂AR(q) = ∑3
k=0 β̂Panel D,kqk to compute (∆ ln ω(q)

∆ ln y∗m
)Panel D = y∗m∆η̂AR(q)

∆ ln s̄(q) . For Panel E, in turn,
we estimate via OLS,

∆ ln ω(q)
∆ ln y∗m

=
3

∑
k=0

βPanel E,kqk + errorPanel E(q)

and directly use (∆ ln ω(q)
∆ ln y∗m

)Panel E = ∑3
k=0 β̂Panel E,kqk to compute the optimal tax on robots.

E.3 Quantitative Implementation of Optimal Tax on Chinese Imports
To implement the formula in Proposition 3 in the case of Chinese imports, we follow the exact
same approach as in Section (5). The only difference is that we now use estimates of ηCLP(q) from
Chetverikov et al. (2016) as the empirical counterpart of

(
δ ln w̄(q)

δy∗m

)
|δG∗=0 for households at the

q-th quantile of the income distribution. These estimates are available across quintiles q ∈ Q ≡
{5, 10, ..., 95}. Following the same steps as before, we obtain the following counterpart of equation
(E.10),

t∗m '
εH

εM + 1
1− sm

sm
∑

q∈Q/{5}
τ(q) s̄(q)

∆ ln ω(q)
∆ ln y∗m

. (E.11)

with the share sm ≡ p∗my∗m/(p∗my∗m + x̄) now a function of Chinese imports, p∗my∗m, and the elasticity
∆ ln ω(q)/∆ ln y∗m now defined as y∗m∆ηCLP(q)/∆ ln s̄(q), with y∗m ' 2.2, which corresponds to the
ratio of the value of US imports from China ($330 billion) to the number of US workers (153
million) in 2007, expressed in thousands of US dollars per worker. The values of all variables
entering equation (E.11) are reported in Table E.2.
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Variables Values Source

Panel A: Baseline
εH, εM 0.5 Chetty (2012)

sm 3.7% Autor et al. (2013)
{τ(q)} {0, 0, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07,

0.14, 0.14, 0.14, 0.14, 0.14, 0.21, 0.21, 0.21, 0.27, 0.28} Guner et al. (2014)
{s̄(q)} {0, 0, 0.01, 0.01, 0.01, 0.02, 0.02, 0.02, 0.03, World Wealth

0.03, 0.04, 0.04, 0.05, 0.05, 0.06, 0.07, 0.08, 0.09, 0.11} and Income Database
{∆ ln ω(q)

∆ ln y∗m
× 100} {−0.27, 0.04, 1.56, 1.57, 1.39,−0.02, 4.93,−0.55, 1.12,

−0.68,−1.62, 3.46, 0.49,−2.94,−2.05, 1.13, 6.33,−4.12} Chetverikov et al. (2016)

Panel B: Inelastic Marshallian labor supply
εM 0 n.a.

Panel C: Effective US marginal tax rates
{τ(q)} {0, 0, 0.07, 0.07, 0.07, 0.07, 0.08, 0.08, 0.08 Guner et al. (2014)

0.12, 0.12, 0.12, 0.15, 0.15, 0.18, 0.18, 0.20, 0.21, 0.22}

Panel D: Fitted wage semi-elasticity
{∆ ln ω(q)

∆ ln y∗m
× 100} {0.16, 0.60, 0.88, 0.94, 0.97, 1.07, 1.02, 1.08, 0.97, Chetverikov et al. (2016)

0.93, 0.78, 0.64, 0.44, 0.19,−0.06,−0.30,−0.45,−0.45}

Panel E: Fitted relative wage elasticity
{∆ ln ω(q)

∆ ln y∗m
× 100} {−0.03, 0.55, 0.96, 1.22, 1.34, 1.35, 1.27, 1.12, 0.92, Chetverikov et al. (2016)

0.69, 0.45, 0.22, 0.21,−0.12,−0.20,−0.17,−0.03, 0.24}

Table E.2: Quantitative Implementation of Optimal Tax on Chinese Imports
Notes: Panels A-E report values used to compute the optimal tax on Chinese imports in Columns (1)-(5),
respectively, of Table 1. All variables are set to their baseline values unless stated otherwise.
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F Section 6

F.1 Preliminaries
Government Problem. Suppose, as in Section 6, that skill heterogeneity is one-dimensional,
θ ∈ [0, 1], so that we can write social welfare as a function of the utility of each skill type,
W({U(θ)}). Using the revelation principle, we can express the government problem as

max
U,n,p
W({U(θ)})

subject to

θ ∈ argmaxθ̃u
(

C(n(θ̃), U(θ̃)), n(θ̃)
w(p, n; θ̃)

w(p, n; θ)

)
,

G∗(c(p, n, U)− y(p, n); φ) ≤ 0,

where C(n(θ), U(θ)) is the aggregate consumption required to achieve utility U(θ) given labor
supply n(θ), that is the solution to u(C, n(θ)) = U(θ), and c(p, n, U) =

´
c(p, C(n(θ), U(θ)))dF(θ)

is the total demand for goods conditional on prices, p, labor supply, n ≡ {n(θ)}, and utility levels,
U ≡ {U(θ)}, with c(p, C) the solution to minc̃(θ){p · c̃|v(c̃) ≥ C}.

The envelope condition associated with the Incentive Compatibility constraint gives

U′(θ) = −un(C(n(θ), U(θ)), n(θ))n(θ)ω(p, n; θ)

with ω(p, n; θ) ≡ wθ(p,n;θ)
w(p,n;θ) . For piecewise differentiable allocations, the envelope condition and

monotonicity of the mapping from wages, w(p, n; θ), to before-tax earnings, w(p, n; θ)n(θ) is equiv-
alent to incentive compatibility. We will focus on cases where w(p, n; θ) is increasing in θ, which
for a given allocation can be interpreted as a normalization or ordering of θ. Under the previous
conditions, we can rearrange our planning problem as

max
U,n,p
W({U(θ)})

subject to

U′(θ) = −un(C(n(θ), U(θ)), n(θ))n(θ)ω(p, n; θ),

G∗(c(p, n, U)− y(p, n); φ) ≤ 0.

Under the functional-form assumptions of Section 6 this simplifies further into

max
U,n,pm

ˆ
U(θ)dΛ(θ) (F.1a)

subject to

U′(θ) = h′(n(θ))n(θ)ω(pm; θ), (F.1b)

φ[

ˆ
(U(θ) + h(n(θ)))dF(θ)− y f (pm, n)]− ym(pm, n) ≤ 0, (F.1c)

with h(n(θ)) ≡ (n(θ))1+1/ε

1+1/ε and Λ(θ) = λ + θ(1− λ).
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Lagrangian. The Lagrangian associated with the planner’s problem (F.1) is given by

L =

ˆ
U(θ)dΛ(θ) +

ˆ
µ(θ)

(
U′(θ)− h′(n(θ))n(θ)ω(pm; θ)

)
dθ

− γ[φ[

ˆ
(U(θ) + h(n(θ)))dF(θ)− y f (pm, n)]− ym(pm, n)].

Integrating by parts, we get

L =

ˆ
U(θ)dΛ(θ)−

ˆ
µ′(θ)U(θ)dθ + U(1)µ(1)−U(0)µ(0)

−
ˆ

µ(θ)h′(n(θ))n(θ)ω(pm; θ)dθ

− γ[φ[

ˆ
(U(θ) + h(n(θ)))dF(θ)− y f (pm, n)]− ym(pm, n)].

Since U(1) and U(0) are free we must have

µ(0) = µ(1) = 0.

First-order Conditions: U(θ). The first-order condition with respect to U(θ) leads to

λ(θ)− µ′(θ)− γφ f (θ) = 0.

Since µ(0) = 0, integrating between 0 and θ, we get

µ(θ) = Λ(θ)− γφF(θ).

Since µ(1) = 0, we must also have
1− γφ = 0.

Combining the two previous observations, we obtain

µ(θ)

γφ
= Λ(θ)− F(θ). (F.2)

First-order Conditions: n(θ). The first-order condition with respect to n(θ) is given by

γφ[y f ,n(θ)(pm, n)− h′(n(θ)) +
1
φ

ym,n(θ)(pm, n}] f (θ) (F.3)

= µ(θ)[h′′(n(θ))n(θ) + h′(n(θ))]ω(pm; θ),

with y f ,n(θ) ≡ ∂y f /∂n(θ) and ym,n(θ) ≡ ∂ym/∂n(θ). The first-order conditions of old technology
firms, new technology firms, and households imply

y f ,n(θ)(pm, n) + pmym,n(θ)(pm, n) = w(θ),

p∗m = 1/φ,
h′(n(θ)) = w(θ)(1− τ(θ)).
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Thus, we can rearrange equation (F.3) into

γφ[w(θ)τ(θ) + (p∗m − pm)ym,n(θ)] f (θ) = µ(θ)h′(n(θ))[
ε(θ) + 1

ε(θ)
]ω(pm; θ), (F.4)

with ε(θ) ≡ d ln(n(θ))/d ln h′(n(θ))).

First-order Conditions: pm. The first-order condition with respect to pm is given by

γφ(p∗m − pm)ym,pm =

ˆ
µ(θ)h′(n(θ))n(θ)ωpm(pm; θ)dθ, (F.5)

with ym,pm ≡ ∂ym/∂pm and ωpm ≡ ∂ω/∂pm.

Optimal Tax on Machines Using equation (F.4) to substitute for µ(θ)h′(n(θ))/γ in equation
(F.5) and noting that ∂ ln ym(pm, n(θ); θ)/∂ ln n(θ) = 1,23 we obtain

pm − p∗m =

´ ε(θ)
ε(θ)+1 ·

d ln ω(θ)
d ln |ym| · τ(θ) · x(θ)dF(θ)

|ym|[1−
´ ε(θ)

ε(θ)+1 ·
d ln ω(θ)
d ln |ym| ·

ym(θ)
|ym| dF(θ)]

,

with d ln ω(θ)
d ln |ym| =

∂ ln pm
∂ ln |ym(pm,n)|

d ln ω(pm;θ)
d ln pm

. Using y∗m = |ym| and t∗m = pm/p∗m − 1, this implies

t∗m =

´ ε(θ)
ε(θ)+1

d ln ω(θ)
d ln y∗m

τ(θ)x(θ)dF(θ)

p∗my∗m[1−
´ ε(θ)

ε(θ)+1
d ln ω(θ)
d ln y∗m

ym(θ)
y∗m

dF(θ)]
. (F.6)

Optimal Income Tax. Equations (F.2) and (F.4) imply

[w(θ)τ(θ) + (p∗m − pm)ym,n(θ)] =
[Λ(θ)− F(θ)]

f (θ)
h′(n(θ))[

ε(θ) + 1
ε(θ)

]ω(pm; θ).

Using again the fact that ∂ ln ym(pm, n(θ); θ)/∂ ln n(θ) = 1 and h′(n(θ)) = w(θ)(1− τ(θ)), from
the first-order condition of the household’s utility maximization problem, this leads to

τ(θ) = τ∗(θ)− pm − p∗m
pm

pmym(θ)

x(θ)
(1− τ∗(θ)), (F.7)

with
τ∗(θ) ≡ 1

1 + ε(θ)
ε(θ)+1 ·

f (θ)
(Λ(θ)−F(θ))ω(pm;θ)

.

23Recall that ym(pm, n(θ); θ) is implicitly defined as the solution to pm = ∂g(ym(θ), n(θ); θ)/∂ym(θ).
Since g(·, ·; θ) is homogeneous of degree one, this is equivalent to pm = ∂g(ym(θ)/n(θ), 1; θ)/∂ym(θ). Dif-
ferentiating, we therefore get ∂ ln ym(pm, n(θ); θ)/∂ ln n(θ) = 1.
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Equation (16). Combining equations (F.6) and (F.7), we obtain

t∗m
1 + t∗m

=

´ ε(θ)
ε(θ)+1 ·

d ln ω(θ)
d ln y∗m

· τ∗(θ) · x(θ)dF(θ)

pmy∗m[1−
´ ε(θ)

ε(θ)+1 ·
d ln ω(θ)
d ln y∗m

· τ∗(θ) · ym(θ)
y∗m

dF(θ)]
(F.8)

In the parametric example of Section 6, we have assumed

ε(θ) = ε for all θ, (F.9)
Λ(θ) = λ + θ(1− λ) for all θ, (F.10)
f (θ) = 1 for all θ, (F.11)
F(θ) = θ for all θ. (F.12)

We therefore immediately get

τ∗(θ, pm) =
1

1 + ε
ε+1 ·

1
λ(1−θ)ω(pm;θ)

. (F.13)

In Section 6, we have also established that

w(pm; θ) = (1− θ)−1/γ(pm),

which implies

ω(pm; θ) =
1

γ(pm)
· 1

1− θ
.

Substituting into equation (F.13), we therefore get

τ∗(θ) =
1

1 + ε
ε+1

γ(pm)
λ

≡ τ∗. (F.14)

In Section (6), we have also established that

d ln ω(pm; θ)

d ln pm
= −βγ(pm),

which implies
d ln ω(θ)

d ln |ym|
= −βγ(pm)

∂ ln pm

∂ ln |ym(pm, n)| =
d ln ω

d ln y∗m
. (F.15)

Combining equations (F.8), (F.9), (F.14) and (F.15), we obtain

t∗m
1 + t∗m

=

ε
ε+1

d ln ω
d ln y∗m

τ∗

1− ε
ε+1

d ln ω
d ln y∗m

τ∗

´
x(θ)dF(θ)

pmy∗m
, (F.16)

Letting sm ≡ pmy∗m´
x(θ)dF(θ)+pmy∗m

, this leads to equation (16).
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F.2 Proof of Proposition 4
From equation (16), we know that

t∗m
1 + t∗m

=

ε
ε+1

d ln ω
d ln y∗m

τ∗

1− ε
ε+1

d ln ω
d ln y∗m

τ∗
1− sm

sm
,

with

d ln ω

d ln |ym|
= −βγ(pm)

∂ ln pm

∂ ln |ym(pm, n)| ,

τ∗ =
1

1 + ε
ε+1

γ(pm)
λ

,

sm =
pm|ym(pm, n)|´

x(θ)dF(θ) + pm|ym(pm, n)| ,

This expression can be rearranged as

t∗m
1 + t∗m

=
Φ

ρ−Φ
1− sm

sm
(F.17)

with

Φ = − λεβγ(pm)

(ε + 1)λ + εγ(pm)
, (F.18)

ρ =
∂ ln |ym(pm, n)|

∂ ln pm
.

We first demonstrate that Φ, sm, and ρ can be expressed as functions of t∗m and φ.
Using the fact that pm = (1 + t∗m)/φ, we can immediately rearrange equation (F.18) as

Φ = − λεβγ((1 + t∗m)/φ)

(ε + 1)λ + εγ((1 + t∗m)/φ)
≡ Φ(t∗m, φ). (F.19)

To express sm as a function of t∗m and φ, we further need to solve for the optimal labor supply
of each agent, n(θ), which itself depends on the marginal income tax rates, τ(θ). Together with
equations (F.14), equation (F.7) implies

τ(θ) =
(ε + 1)λ− t∗m

1+t∗m
pmym(θ)

x(θ) εγ(pm)

(ε + 1)λ + εγ(pm)
.

From the first-order condition of the old technology firms, we know that

pmym(θ)

x(θ)
= −β ln(1− θ), (F.20)

which leads to

τ(θ) =
(ε + 1)λ + t∗m

1+t∗m
βεγ(pm) ln(1− θ)

(ε + 1)λ + εγ(pm)
. (F.21)
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The optimal labor supply is given by the agent’s first-order condition

n(θ) = ((1− τ(θ))w(θ))ε. (F.22)

Combining equations (F.21) and (F.22) with the fact that w(pm; θ) = (1− θ)−1/γ(pm), we get

n(θ) = (
εγ(pm)

(ε + 1)λ + εγ(pm)
)ε(1− t∗m

1 + t∗m
β ln(1− θ))ε(1− θ)−ε/γ(pm),

and in turn,
ˆ

w(θ)n(θ)dθ = (
εγ(pm)

(ε + 1)λ + εγ(pm)
)ε

ˆ
(1− t∗m

1 + t∗m
β ln(1− θ))ε(1− θ)

− 1+ε
γ(pm) dθ

Using equation (F.20), we further get

pmym(θ) = −β ln(1− θ)(
εγ(pm)

(ε + 1)λ + εγ(pm)
)ε(1− t∗m

1 + t∗m
β ln(1− θ))ε(1− θ)

− 1+ε
γ(pm) , (F.23)

and in turn,

pm|ym| = −β(
εγ(pm)

(ε + 1)λ + εγ(pm)
)ε

ˆ
ln(1− θ)(1− t∗m

1 + t∗m
β ln(1− θ))ε(1− θ)

− 1+ε
γ(pm) dθ. (F.24)

The aggregate share of robots is therefore given by

sm =

´
β ln(1− θ)(1− t∗m

1+t∗m
β ln(1− θ))ε(1− θ)

− 1+ε
γ((1+t∗m)/φ) dθ

´
(β ln(1− θ)− 1)(1− t∗m

1+t∗m
β ln(1− θ))ε(1− θ)

− 1+ε
γ((1+t∗m)/φ) dθ

≡ sm(t∗m, φ), (F.25)

where we have again used pm = (1 + t∗m)/φ. Let us now turn to the elasticity ρ. From equation
(F.20) and the fact that w(pm; θ) = (1− θ)−1/γ(pm), we get

pmym(θ) = −β ln(1− θ)n(θ)(1− θ)−1/γ(pm). (F.26)

Using the previous expression with the definition of ρ ≡ ∂ ln |ym(pm,n)|
∂ ln pm

, we get

ρ =

ˆ
y(pm, n(θ); θ)

|ym(pm, n)|
d ln w(pm; θ)

d ln pm
dθ − 1.

Combining the previous expressions with equations (F.23), (F.24), and using the fact that d ln w(pm;θ)
d ln pm

=

β ln(1− θ) and pm = (1 + t∗m)/φ, we get

ρ =

´
(β ln(1− θ)− 1) ln(1− θ)(1− t∗m

1+t∗m
β ln(1− θ))ε(1− θ)

− 1+ε
γ((1+t∗m)/φ) dθ

´
ln(1− θ)(1− t∗m

1+t∗m
β ln(1− θ))ε(1− θ)

− 1+ε
γ((1+t∗m)/φ) dθ

≡ ρ(t∗m, φ). (F.27)

At this point, we have established that the three statistics in equation (F.17) can be expressed
as Φ(t∗m, φ), ρ(t∗m, φ), and sm(t∗m, φ). We can therefore rearrange equation (F.17) as

H(t∗m, Φ(t∗m, φ), ρ(t∗m, φ), sm(t∗m, φ)) = 0,
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with
H(t∗m, Φ, ρ, sr) ≡

Φ
ρ−Φ

· 1− sm

sm
− t∗m

1 + t∗m
.

By the Implicit Function Theorem, we have

dt∗m
dφ

= − dH/dφ

dH/dt∗m
. (F.28)

Since the tax on robots is chosen to maximize welfare, the second derivative of the government’s
value function, expressed as a function of t∗m only, must be negative. Noting that H corresponds
to its first derivative—which is equal to zero at the optimal tax—we therefore obtain

dH/dt∗m < 0. (F.29)

Since γ(·) is a strictly increasing function, equation (F.19) implies

∂Φ(t∗m, φ)

∂φ
> 0. (F.30)

To establish the monotonicity of sm and ρ with respect to φ, it is convenient to introduce the fol-
lowing function:

d(t∗m, φ, ζ; θ) = (1− β
t∗m

1 + t∗m
ln(1− θ))ε(1− θ)

− 1+ε
γ((1+t∗m)/φ) (ln(1− θ))−ζ .

By construction, d is log-supermodular in (φ, ζ, θ). Since log-supermodularity is preserved by
integration, the following function,

D(φ, ζ) =

ˆ
d(t∗m, φ, ζ; θ)dθ,

is also log-supermodular. It follows that

D(φ, ζ = 0)
D(φ, ζ = −1)

=

´
(1− β t∗m

1+t∗m
ln(1− θ))ε(1− θ)

− 1+ε
γ((1+t∗m)/φ) dθ

´
(ln(1− θ))(1− β t∗r

1+t∗r
ln(1− θ))ε(1− θ)

− 1+ε
γ((1+t∗m)/φ) dθ

is increasing in φ,

D(φ, ζ = −2)
D(φ, ζ = −1)

=

´
(ln(1− θ))2(1− β t∗m

1+t∗m
ln(1− θ))ε(1− θ)

− 1+ε
γ((1+t∗m)/φ) dθ

´
(ln(1− θ))(1− β t∗r

1+t∗m
ln(1− θ))ε(1− θ)

− 1+ε
γ((1+t∗m)/φ) dθ

is decreasing in φ.

Noting that

sm =
1

1− 1
β

D(φ,ζ=0)
D(φ,ζ=−1)

,

ρ = β
D(φ, ζ = −2)
D(φ, ζ = −1)

− 1,
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we obtain that

∂sm(t∗m, φ)

∂φ
> 0, (F.31)

∂ρ(t∗m, φ)

∂φ
< 0. (F.32)

Since ∂H
∂Φ < 0, ∂H

∂sm
< 0, and ∂H

∂ρ > 0, inequalities (F.30)-(F.32) imply

dH
dφ

=
∂H
∂Φ

∂Φ
∂φ

+
∂H
∂sm

∂sm

∂φ
+

∂H
∂ρ

∂ρ

∂φ
< 0.

Combining this observation with equation (F.28) and (F.29), we conclude that dt∗m/dφ < 0.

F.3 Proof of Proposition 5
Optimal Tax on Machines (t∗m). Consider the optimal tax on machines, t∗m. In the proof of
Proposition 4, we have already established that

t∗m
1 + t∗m

=
Φ

ρ−Φ
1− sm

sm
.

with

Φ = − λεβγ((1 + t∗m)/φ)

(ε + 1)λ + εγ((1 + t∗m)/φ)
,

sm =

´
β ln(1− θ)(1− t∗m

1+t∗m
β ln(1− θ))ε(1− θ)

− 1+ε
γ((1+t∗m)/φ) dθ

´
(β ln(1− θ)− 1)(1− t∗m

1+t∗m
β ln(1− θ))ε(1− θ)

− 1+ε
γ((1+t∗m)/φ) dθ

,

ρ =

´
(β ln(1− θ)− 1) ln(1− θ)(1− t∗m

1+t∗m
β ln(1− θ))ε(1− θ)

− 1+ε
γ((1+t∗m)/φ) dθ

´
ln(1− θ)(1− t∗m

1+t∗m
β ln(1− θ))ε(1− θ)

− 1+ε
γ((1+t∗m)/φ) dθ

.

It follows that Φ is strictly decreasing in λ, whereas sm and ρ are independent of λ. Invoking
the Implicit Function Theorem in the exact same way as we did in the proof of Proposition 4, we
therefore get: dt∗m/dλ > 0.

Constrained Optimal Tax on Machines (tc
m). Let us first characterize the constrained opti-

mal tax on machines, tc
m. Suppose that the income tax schedule is exogenously set at T = Tc, with

Tc a linear tax schedule with constant marginal tax rate τc ∈ [0, 1]. Proposition (1) implies

tc
m

1 + tc
m
= [λ(1− τc)− τcε]

ˆ
w(θ)n(θ)

pmy∗m

δ ln w(θ)

δ ln y∗m
|δT=0 dθ. (F.33)

Next we compute w(θ)n(θ), pmy∗m, and δ ln w(θ)
δ ln y∗m

|δT=0, all evaluated at tm = tc
m. As already noted in

Section 6.1, the equilibrium wage schedule is given by

w(pm; θ) = (1− θ)−1/γ(pm); (F.34)
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and as already argued in the proof of Proposition 4, the labor supply of households satisfies (F.22),

n(θ) = ((1− τc)w(θ))ε.

Combining these two expressions, earnings can be expressed as

w(θ)n(θ) = (1− τc)ε(1− θ)−(1+ε)/γ(pm). (F.35)

As already argued in the proof of Proposition 4, the firm’s demand for machines also satisfies
(F.20),

pmym(θ)

w(θ)n(θ)
= −β ln(1− θ),

which further implies

pmy∗m = −β(1− τc)ε

ˆ
(1− θ)−(1+ε)/γ(pm) ln(1− θ)dθ =

β(1− τc)ε

[1− (1 + ε)/γ(pm)]2
. (F.36)

Finally, note that δ ln w(θ)
δ ln y∗m

|δT=0 can be expressed as

δ ln w(θ)

δ ln y∗m
|δT=0 =

d ln w(pm; θ)/d log pm

d ln y∗m(pm, n(pm); θ)/d log pm
.

Equations (F.34) and (F.36) therefore imply

δ ln w(θ)

δ ln y∗m
|δT=0 = − [1− (1 + ε)/γ(pm)]β ln(1− θ)

2β(1 + ε) + 1− (1 + ε)/γ(pm)
. (F.37)

Combining equations (F.36), (F.36), (F.36), and (F.37), we obtain

tc
m

1 + tc
m
=

[λ(1− τc)− τcε][1− (1 + ε)/γ(pm)]

2β(1 + ε) + 1− (1 + ε)/γ(pm)
. (F.38)

Following the same strategy as in the proof of Proposition 4, we can rearrange the previous ex-
pression as

H(tc
m, λ) = 0,

with

H(tc
m, λ) ≡

[λ(1− τc)− τcε][1− 1+ε
γ((1+tc

m)/φ)
]

2β(1 + ε) + 1− 1+ε
γ((1+tc

m)/φ)

− tc
m

1 + tc
m

.

By the Implicit Function Theorem, we have

dtc
m

dλ
= − dH/dλ

dH/dtc
m

.

Since the tax on robots is chosen to maximize welfare, the second derivative of the government’s
value function, expressed as a function of tc

m only, must be negative. Noting that H corresponds
to its first derivative—which is equal to zero at the optimal tax—we therefore obtain dH/dtc

m < 0.
Since dH/dλ > 0, we conclude that dtc

m
dλ > 0.
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F.4 Numerical Example
Baseline Economy. In the numerical example of Section 6.3, we set ε = 0.5 and normalize
φ = 1. We then set α and β so that if T is a linear income tax schedule with τc = 27% and there is
no tax on machine tm = 0, the share of machines in gross output and the elasticity of relative wage
satisfy

sm = 2.1%, (F.39)
d ln ω

d ln y∗m
= 0.5%. (F.40)

By equations (F.35) and (F.36), we know that

sm ≡
pmy∗m´

w(θ)n(θ)dθ + pmy∗m
=

β

β + 1− (1 + ε)/γ(pm)
. (F.41)

By equations (F.15) and (F.27), evaluated with a zero tax on machines, we also know that

d ln ω

d ln y∗m
=

βγ(pm)[1− (1 + ε)/γ(pm)]

2β + 1− (1 + ε)/γ(pm)
. (F.42)

Using ε = 0.5, γ(pm) ≡ 1/(α− β ln pm), and pm = 1, we can rearrange equations (F.39)-(F.42) as

β

β + 1− 1.5α
= 2.1%,

β[1− 1.5α]

α[2β + 1− 1.5α]
= 0.5%.

The solution of the previous system gives α = 0.57, and β = 0.003, as argued in Section 6.3.

Optimal Taxes using Propositions 2 and 3. In Section 6.3, we discuss, together with the
optimal tax t∗m and the constrained optimal tax tc

m, the taxes on machines that would be obtained
by using the formulas in Propositions 2 and 3 in the baseline economy: (tm)δŪ=0 ' 2.28% and
(tm)δŪ=0,f.o.a ' 2.18%, respectively. We now formally describe how we derive these two tax rates.

Consider first (tm)δŪ=0. From Proposition 2, we know that

(tm)δŪ=0
1 + (tm)δŪ=0

=

ˆ
τc (w(θ)n(θ))baseline

(pmy∗m)baseline

ε

ε + 1

(
δ ln ω(θ)

δ ln y∗m
|δŪ=0

)
baseline

dθ. (F.43)

In the baseline economy, we also know that φ = 1 and tm = 0, which implies pm = 1. Since the
baseline economy also features a constant marginal income tax rate τc, equation (F.35) in Appendix
F.4 implies

(w(θ)n(θ))baseline = (1− τc)ε(1− θ)−α(1+ε), (F.44)

whereas equation F.36 implies

(pmy∗m)baseline =
β(1− τc)ε

[1− α(1 + ε)]2
. (F.45)
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To compute
(

δ ln ω(θ)
δ ln y∗m

|δŪ=0

)
baseline

, note that

(
δ ln ω(θ)

δ ln y∗m
|δŪ=0

)
baseline

=
(d ln ω(pm; θ)/d ln pm)baseline
(δ ln y∗m/δ ln pm|δŪ=0)baseline

, (F.46)(
δ ln y∗m
δ ln pm

|δŪ=0

)
baseline

=

(
∂ ln |ym(pm, n)|

∂ ln pm

)
baseline

+

ˆ (
∂ ln |ym(pm, n)|

∂ ln n(θ)

)
baseline

(
δ ln n(θ)
δ ln pm

|δŪ=0

)
baseline

dθ, (F.47)(
δ ln n(θ)
δ ln pm

|δŪ=0

)
baseline

= − ε

ε + 1

(
d ln ω(pm; θ)

d ln pm

)
baseline

, (F.48)

where the third equality has been established in Appendix D.3, with(
d ln ω(pm; θ)

d ln pm

)
baseline

= −β

α
, (F.49)(

∂ ln |ym(pm, n)|
∂ ln pm

)
baseline

=

´
(β ln(1− θ)− 1) ln(1− θ)(1− θ)−α(1+ε)dθ´

ln(1− θ)(1− θ)−α(1+ε)dθ
, (F.50)(

∂ log |ym(pm, n)|
∂ log n(θ)

)
baseline

= 1, (F.51)

where the first equality has been established in Section (6) and the second and third derive from
equation (F.26) in Appendix F.2. Combining equations (F.43)-(F.51), we obtain

(tm)δŪ=0
1 + (tm)δŪ=0

=
ε

ε + 1
τc

α

[1− α(1 + ε)]2

2β + 1− α(1 + ε) + βε(1− 1
α(ε+1) )

.

Next consider (tm)δŪ=0,f.o.a.. From Proposition 3, we know that

(tm)δŪ=0,f.o.a.

1 + (tm)δŪ=0,f.o.a.
=

ˆ
τc (w(θ)n(θ))baseline

(pmy∗m)baseline

ε

ε + 1

(
δ ln ω(θ)

δ ln y∗m
|δT=0

)
baseline

dθ, (F.52)

since the variation δT = 0 is a budget-balanced variation. To compute
(

δ ln ω(θ)
δ ln y∗m

|δT=0

)
baseline

, we
again use (

δ ln ω(θ)

δ ln y∗m
|δT=0

)
baseline

=
(d ln ω(pm; θ)/d ln pm)baseline
(δ ln y∗m/δ ln pm|δT=0)baseline

,

where (d ln ω(pm; θ)/d ln pm)baseline = −β/α and (δ ln y∗m/δ ln pm|δT=0)baseline can be computed
using (F.36) as in Appendix F.3. This leads to(

δ ln ω(θ)

δ ln y∗m
|δT=0

)
baseline

=
β

α

1− α (1 + ε)

1− α (1 + ε) + 2β(1 + ε)
. (F.53)

Combining equations (F.44), (F.45), (F.52), and (F.53), we obtain

(tm)δŪ=0,f.o.a.

1 + (tm)δŪ=0,f.o.a.
=

ε

ε + 1
τc

α

[1− α(1 + ε)]2

2β + 1− α (1 + ε) + 2βε
.
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