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Abstract

We extend the basic Schumpeterian endogenous growth model by allowing incumbents to undertake 
innovations to improve their products, while entrants engage in more “radical” innovations to replace in-
cumbents. Our model provides a tractable framework for the analysis of growth driven by both entry of new 
firms and productivity improvements by continuing firms. The model generates a non-degenerate equilib-
rium firm size distribution driven by entry of new firms and expansion exit of existing firms. When there is 
also costly imitation preventing any sector from falling too far below the average, the stationary firm size 
distribution is Pareto with an exponent approximately equal to one (the so-called “Zipf distribution”).
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

The endogenous technological change literature provides a coherent and attractive framework 
for modeling productivity growth at the industry and the aggregate level. It also enables a study 
of how economic growth responds to policies and market structure. A key aspect of the growth 
process is the interplay between innovations and productivity improvements by existing firms on 
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the one hand and entry by more productive, new firms on the other. Existing evidence suggests 
that this interplay is important for productivity growth. For example, Bartelsman and Doms [18]
and Foster et al. [29], among others, document that entry of new establishments (plants) accounts 
for about 25% of average TFP growth at the industry level, with the remaining productivity 
improvements accounted for by continuing establishments (Lentz and Mortensen [43] find an 
even more important role for entry).

These issues, however, are difficult to address with either of the two leading approaches to 
endogenous technological change, the expanding variety models, e.g., Romer [54], Grossman 
and Helpman [34], Jones [38], and the Schumpeterian quality ladder models, e.g., Segerstrom and 
Dinopoloulos [59], Aghion and Howitt [5], Grossman and Helpman [33].2 The expanding variety 
models do not provide a framework for directly addressing these questions.3 The Schumpeterian 
models are potentially better suited to studying the interplay between incumbents and entrants 
as they focus on the process of creative destruction and entry. Nevertheless, because of Arrow’s 
replacement effect (Arrow [12]), these baseline models predict that all innovation should be 
undertaken by new firms and thus do not provide a framework for the analysis of the bulk of 
productivity growth accounting for continuing firms and establishments.4

This paper provides a simple framework that combines these two ideas by Schumpeter and 
involves simultaneous innovation by new and existing establishments.5 The model is a tractable 
(and minimal) extension of the textbook multisector Schumpeterian growth model. A given num-
ber of sectors produce inputs (machines) for the unique final good of the economy. In each sector, 
there is a quality ladder, and at any point in time, a single firm has access to the highest quality 
input (machine). This firm can increase its quality continuously by undertaking “incremental” 
R&D in order to increase productivity and profits. These R&D investments generate productiv-
ity growth by continuing firms. At the same time, potential entrants undertake “radical” R&D 
in order to create a better input and replace the incumbent.6 A large case study literature on 
the nature of innovation, for example, Freeman [30], Pennings and Buitendam [52], Tushman 
and Anderson [64] and Scherer [57], documents how established firms are the main source of 
innovations that improve existing products, while new firms invest in more radical and “origi-
nal” innovations (see also the discussion in Arrow [11]). Recent work by Akcigit and Kerr [10]
provides empirical evidence from the US Census of Manufacturers that large firms engage more 

2 Klette and Kortum [41] is an exception and will be discussed below.
3 In the expanding variety models, the identity of the firms that are undertaking the innovation does not matter, so one 

could assume that it is the existing producers that are inventing new varieties, though this will be essentially determining 
the distribution of productivity improvements across firms by assumption.

4 Models of step-by-step innovation, such as Aghion et al. [6,7], and Acemoglu and Akcigit [3], allow innovation by 
incumbents, but fix the set of firms competing within an industry, and thus do not feature entry. Aghion et al. [8] consider 
an extension of these models in which there is entry, but focus on how the threat of entry may induce incumbents to 
innovate.

5 In the model, each firm will consist of a single plant, thus the terms “establishment,” “plant” and “firm” can be used 
interchangeably. Clearly, models that distinguish between plants and firms made up of multiple plants would be better 
suited to empirical analysis of industry dynamics, but would also be more complex. We are following the bulk of the 
endogenous technological change literature in abstracting from this important distinction. For models of dynamics of 
multi-establishment firms, see Klette and Kortum [41] and Acemoglu et al. [4].

6 Continuing firms do not invest in radical R&D because of Arrow’s replacement effect, but generate productivity 
growth as they have access to a technology for improving the quality of their machines/products and have the incentives 
to do so. Etro [28] provides an alternative model in which incumbents invest in R&D because, as in Aghion et al. [6,7], 
and Acemoglu and Akcigit [3], they are engaged in a patent race against entrants. He shows that the Arrow replacement 
effect disappears when incumbents are Stackelberg leaders in this race.
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in “exploitative” R&D, while small firms perform “exploratory” R&D (defined similarly to the 
notions of “incremental” and “radical” R&D here).

The dynamic equilibrium of this economy can be characterized in closed-form and leads to 
a number of interesting comparative static results. It generates endogenous growth in a manner 
similar to the standard endogenous technological change models, but the contribution of incum-
bent (continuing plants) and new firms to growth is determined in equilibrium.

Our model identifies a new effect: the rate of entry of new firms depresses the profitability of 
incumbent innovation and, via this channel, may reduce aggregate productivity growth. Whether 
this is the case or not depends on the degree of diminishing returns to incumbent innovation. 
When incumbent innovation has a linear technology, greater entry or policies that encourage 
entry reduce overall innovation and growth. But in the more plausible case where incumbent 
innovation exhibits diminishing returns, the relationship between entry and overall growth is 
ambiguous, and depends on whether the degree of diminishing returns is above or below a critical 
threshold. This result highlights that, despite the Schumpeterian character of the model here, 
policies that encourage entry may create countervailing effects and may have less than expected 
or little impact on the overall innovation and growth rate of the economy.

Since existing firms are involved in innovation and expand their sizes as they increase their 
productivity and there is entry and exit of firms, the model, despite its simplicity, also generates 
rich firm dynamics and an endogenous distribution of firm sizes. The available evidence suggests 
that firm size distribution, or its tail for firms above a certain size, can be approximated by a 
Pareto distribution with a shape coefficient close to one (i.e., the so-called “Zipf’s distribution,” 
where the fraction of firms with size greater than S is proportional to 1/S, e.g., Lucas [45], 
Gabaix [31], Axtell [16]).7 We show that, a slight variant of the model where costly imitation is 
also allowed (so that new firms enter into sectors that fall significantly below the average in terms 
of quality, ensuring an endogenous lower bound to quality), the stationary firm size distribution 
has a Pareto tail with a shape coefficient approximately equal to one.8

Our paper is most closely related to Klette and Kortum [41], and to a handful of recent papers 
building on their work, such as Lentz and Mortensen [43] and Acemoglu et al. [4]. Klette and 
Kortum construct a rich model of firm and aggregate innovation dynamics. Their model is one 
of expanding product varieties in which the firm size distribution is driven by differences in the 
number of products that a particular firm produces. Klette and Kortum assume that firms with 
more products have an advantage in discovering more new products. With this assumption, their 
model generates the same patterns as here and also matches additional facts about propensity to 
patent and differential survival probabilities by size. One disadvantage of this approach is that 

7 Our model also implies that firm growth is consistent with the so-called “Gibrat’s Law,” which posits a unit root in 
firm growth and appears to be a good approximation to the data (see, for example, Sutton [62,63]), even though detailed 
analysis shows significant deviations from Gibrat’s Law for small firms, see, for example, Hall [35], Akcigit [9] and 
Rossi-Hansberg and Wright [56]. See also Dunne and Samuelson [24,25] and Klepper [40] for patterns of firm entry and 
exit. For evidence on firm size distribution, see the classic paper by Simon and Bonini [60] and the recent evidence in 
Axtell [16], and Rossi-Hansberg and Wright [56]. The later finds a slight deviation from Zipf’s law for firms with more 
than 10,000 employees. For the size distribution of cities, see, among others, Dobkins and Ioannides [23], Gabaix [31]
and Eeckhout and Jovanovic [26].

8 Firm dynamics leading to this result are richer than those implied by many existing models, since firm growth is 
driven both by the expansion of incumbents and entry (both of which are fully endogenous). Nevertheless, as in standard 
Schumpeterian models, entrants are more productive, and hence larger, than incumbents. This feature can be relaxed by 
assuming that it takes entrants a while to reach their higher potential productivity, though this extension would signifi-
cantly complicate the analysis (e.g., Freeman [30]). See Luttmer [48] for a model with this feature.
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the firm size distribution is not driven by the dynamics of continuing plants (and if new prod-
ucts are interpreted as new plants or establishments, the Klette–Kortum model predicts that all 
productivity growth will be driven by entry of new plants, though this may be an extreme inter-
pretation, since some new products are produced in existing plants). The current model is best 
viewed as complementary to Klette and Kortum [41], and focuses on innovations by existing 
firm in the same line of business instead of the introduction of new products. In practice, both 
types of innovations appear to be important and it is plausible that existing large firms might be 
more successful in locating new product opportunities.9 Nevertheless, both qualitative and some 
recent quantitative evidence suggest that innovation by existing firms and existing lines of prod-
ucts are important in innovation and productivity growth. Abernathy [1], Lieberman [44], and 
Scherer [57], among others, provide various case studies documenting the importance of innova-
tions by existing firms and establishments in the same line of business (for example, Abernathy 
stresses the role of innovations by General Motors and Ford in the car industry). Empirical work 
by Bartelsman and Doms [18] and Foster et al. [29] also suggests that productivity growth by 
continuing establishments plays a major role in industry productivity growth, while Broda and 
Weinstein [20] provide empirical evidence on the importance of improvements in the quality of 
products in international trade.

Several papers provide models with innovation from both incumbents and entrants, but based 
on a different approach from ours. Grossman and Helpman [32], Segerstrom and Zolnierek [58], 
and Denicolo and Zanchettin [22] generate this result focusing only on “radical innovations” that 
replace old products, but assume that the incumbents have lower costs of innovation compared 
to the entrants. Peretto [53], Luttmer [47], Atkeson and Burstein [13], and Acemoglu et al. [4]
consider models in which entrants’ new products are fully differentiated from the incumbents’ 
product, thus eschewing creative destruction (and incumbents and entrants are equally likely 
to invest in new products). In contrast to these papers, in our work incumbents specialize in 
improving their products while entrants engage in radical R&D in order to create higher quality 
products and overtake product lines previously operated by incumbents.

Other related papers include Lentz and Mortensen [43], Klepper [40] and Acemoglu et al. [4]. 
Lentz and Mortensen [43] and Acemoglu et al. [4] extend Klette and Kortum’s model by intro-
ducing additional sources of heterogeneity and estimate the model’s parameters. Klepper [40]
documents various facts about firm size, entry and exit decisions, and innovation, and provides a 
simple descriptive model that can account for these facts.

Lastly, our paper is also related to the set of papers on firm heterogeneity and firm size dis-
tribution which include Jovanovic [39], Hopenhayn [36], Ericson and Pakes [27], Melitz [51], 
Rossi-Hansberg and Wright [55,56], Lagos [42], and Luttmer [46–49]. Many of these papers gen-
erate realistic firm size distributions based on productivity heterogeneity (combined with fixed 
costs of operation). They typically take the stochastic productivity growth process of firms as 
exogenous, whereas our focus here is on understanding how R&D decisions of firms shape the 
endogenous process of productivity growth. Luttmer’s recent papers [48,49] are particularly no-
table, as they also incorporate exit and entry decisions, and generate empirically realistic firm 
size distributions under the assumption that there are knowledge spillovers across firms (and 
with exogenous aggregate growth). Our model, despite being highly tractable and only a small 
deviation from the textbook Schumpeterian model, also generates a realistic firm size distribution 

9 Scherer [57], for example, emphasizes both the importance of innovation by continuing firms (and establishments) 
and that larger firms produce more products.
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(with a Pareto tail as in Luttmer [47] for firm sizes, Gabaix [31] and Cordoba [21] for cities, or 
Benhabib et al. [19] for wealth distribution). To the best of our knowledge, ours is the first paper 
to analytically characterize the stationary firm size distribution with fully endogenous growth 
rates (of both continuing firms and entrants).10

The rest of the paper is organized as follows. Section 2 presents the basic environment and 
characterizes the equilibrium. In Section 3, we characterize the balanced growth path and equi-
librium firm size distribution. Section 4 provides simulations illustrating some of the model’s 
quantitative implications. Section 5 concludes, while Appendix A contains several proofs omit-
ted from the text and some additional results.

2. Baseline model

2.1. Environment

The economy is in continuous time and admits a representative household with the standard 
constant relative risk aversion (CRRA) preference

∞∫
0

e−ρt C(t)1−θ − 1

1 − θ
dt,

where θ is the coefficient of relative risk aversion or the inverse of the intertemporal elasticity of 
substitution.

Population is constant at L and labor is supplied inelastically. The resource constraint at time t

takes the form

C(t) + X(t) + Z(t) ≤ Y(t), (1)

where C(t) is consumption, X(t) is aggregate spending on machines, and Z(t) is total expendi-
ture on R&D at time t .

There is a continuum of machines (inputs) normalized to 1 used in the production of a unique 
final good. Each machine line is denoted by ν ∈ [0, 1]. The production function of the unique 
final good is given by:

Y(t) = 1

1 − β

[ 1∫
0

q(ν, t)βx(ν, t | q)1−βdν

]
Lβ, (2)

where x(ν, t | q) is the quantity of the machine of type ν of quality q used in the production 
process. This production process implicitly imposes that only the highest quality machine will 
be used in production for each type of machine ν ∈ [0, 1].

Throughout, the price of the final good at each point is normalized to 1 (relative prices of final 
goods across different periods being determined by the interest rate).

The engine of economic growth here will be two forms of process innovations that lead to 
quality improvements: (1) Innovation by incumbents. (2) Creative destruction by entrants. Let 
q(ν, t) be the quality of machine line ν at time t . We assume the following “quality ladder” for 
each machine type:

q(ν, t) = λnq(ν, s) for all v and t,

10 See Luttmer [50] for a review of the current literature.
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where λ > 1 and n is the number of incremental innovations on this machine line between time 
s ≤ t and time t , where time s is the date at which this particular machine type was first invented 
and q(ν, s) refers to its quality at that point. The incumbent has a fully enforced patent on the 
machines that it has developed (though this patent does not prevent entrants leapfrogging the 
incumbent’s quality). We assume that at time t = 0, each machine line starts with some quality 
q(ν, 0) > 0 owned by an incumbent with a fully-enforced patent on this initial machine quality.

Incremental innovations can only be performed by the incumbent producer.11 So we can think 
of those as “tinkering” innovations that improve the quality of the machine. If the current incum-
bent spends an amount z(ν, t)q(ν, t) of the final good for this type of innovation on a machine of 
current quality q(ν, t), it has a flow rate of innovation equal to φ(z(ν, t)), where φ(z) is strictly 
increasing, concave in z and satisfies the following Inada-type assumption12:

φ(0) = 0 and φ′(0) = ∞.

Recall that such an innovation results in a proportional improvement in quality and the resulting 
new machine will have quality λq(ν, t).

The alternative to incremental innovations are radical innovations. A new firm (entrant) can 
undertake R&D to innovate over the existing machines in machine line ν at time t .13 If the current 
quality of machine is q(ν, t), then by spending one unit of the final good, this new firm has a flow 
rate of innovation equal to η(̂z(ν,t))

q(ν,t)
, where η(·) is a strictly decreasing, continuously differentiable 

function, and ̂z(ν, t)q(ν, t) is the total amount of R&D by new entrants towards machine line ν
at time t . The presence of the strictly decreasing function η captures the fact that when many 
firms are undertaking R&D to replace the same machine line, they are likely to try similar ideas, 
thus there will be some amount of “external” diminishing returns (new entrants will be “fishing 
out of the same pond”). Since each entrant attempting R&D on this line is potentially small, they 
will all take ̂z(ν, t) as given. Given the total amount of R&D, ̂z(ν, t)q(ν, t), by new entrants and 
the assumption on the flow rate of innovation, the rate of radical innovations realized in machine 
ν at time t is ̂z(ν, t)η(̂z(ν, t)). This implicit assumption that the cost of radical innovations is 
proportional to the current quality level in a sector is consistent with the assumption on the 
innovation technology, φ(·) of the incumbents.

Throughout we assume that zη(z) is strictly increasing in z so that greater aggregate R&D 
towards a particular machine line increases the overall likelihood of discovering a superior ma-
chine. We also suppose that η(z) satisfies the following Inada-type assumptions

lim
z→0

zη(z) = 0 and lim
z→∞ zη(z) = ∞.

An innovation by an entrant leads to a new machine of quality κq(ν, t), where κ > λ. This is 
the sense in which innovation by entrants are more “radical” than those of incumbents. Exist-
ing empirical evidence from studies of innovation supports the notion that innovations by new 

11 This is similar to the assumption in Section 7.3 in Barro and Sala-i Martin [17] that the incumbents have some cost 
advantage in conducting research. Here we make an extreme assumption that the cost of incremental research is infinite 
to the entrants. However, incumbents and entrants have equal cost in performing radical research.
12 More formally, this implies that for any interval 
t > 0, the probability of one incremental innovation is φ(z(ν, t))
t

and the probability of more than one incremental innovation is o(
t) with o(
t)/
t → 0 as 
t → 0.
13 Incumbents could also access the technology for radical innovations, but would choose not to. Arrow’s replacement 
effect implies that since entrants make zero or negative profits from this technology (because of free entry), the profits of 
incumbents, who would be replacing their own product, would be negative. Incumbents will still find it profitable to use 
the technology for incremental innovations, which is not available to entrants.
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entrants are more significant or radical than those of incumbents.14 We assume that whether the 
entrant was a previous incumbent or not does not matter for its technology of innovation or for 
the outcome of its innovation activities.15

Simple examples of functions φ(·) and η(·) that satisfy the requirements above are

φ(z) = Az1−α and η(z) = Bz−γ , (3)

with α, γ ∈ (0, 1). We will sometimes use these functional forms to illustrate the results we 
present below.

Now we turn to describing the production technology. Once a particular machine of quality 
q(ν, t) has been invented, any quantity of this machine can be produced at constant marginal cost, 
which we normalize at 1 − β without loss of any generality in order to simplify the expressions 
below. This implies that the total amount of expenditure on the production of intermediate goods 
at time t is

X(t) = (1 − β)

1∫
0

x(ν, t)dν, (4)

where x(ν, t) is the quantity of this machine used in final good production. Similarly, the total 
expenditure on R&D is

Z(t) =
1∫

0

[
z(ν, t) + ẑ(ν, t)

]
q(ν, t)dν, (5)

where q(ν, t) refers to the highest quality of the machine of type ν at time t . Notice also that total 
R&D is the sum of R&D by incumbents and entrants (z(ν, t) and ̂z(ν, t) respectively). Finally, 
define px(ν, t | q) as the price of machine type ν of quality q(ν, t) at time t . This expression 
stands for px(ν, t | q(ν, t)), but there should be no confusion in this notation since it is clear 
that q refers to q(ν, t), and we will use this notation for other variables as well (and moreover, 
we also write z(ν, t) and ̂z(ν, t) without conditioning on the type and quality of the machine at 
which R&D is directed, since this will not cause any confusion and simplifies the notation).

2.2. Equilibrium definitions

An allocation in this economy consists of time paths of consumption levels, aggregate spend-
ing on machines, and aggregate R&D expenditure [C(t), X(t), Z(t)]∞t=0, time paths for R&D 
expenditure by incumbents and entrants [z(ν, t), ̂z(ν, t)]∞v∈[0,1],t=0, time paths of prices and 
quantities of each machine and the net present discounted value of profits from that machine, 
[px(ν, t | q), x(ν, t), V (ν, t | q)]∞v∈[0,1],t=0, and time paths of interest rates and wage rates, 
[r(t), w(t)]∞t=0. An equilibrium is an allocation where R&D decisions by entrants maximize 
their net present discounted value; pricing, quantity and R&D decisions by incumbents max-
imize their net present discounted value; the representative household maximizes utility; final 
good producers maximize profits; and the labor and final good markets clear.

14 However, it may take a while for the successful entrants to realize the full productivity gains from these innovations 
(e.g., Freeman [30]). We are abstracting from this aspect.
15 The model in Chapter 14.3 in Acemoglu [2] corresponds to a special case of the model presented here with linear φ, 
i.e., φ(z) = φz.
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Let us start with the aggregate production function for the final good production. Profit max-
imization by the final good sector implies that the demand for the highest available quality of 
machine ν ∈ [0, 1] at time t is given by

x(ν, t) = px(ν, t | q)−1/βq(ν, t)L for all ν ∈ [0,1] and all t. (6)

The price px(ν, t | q) will be determined by the profit maximization of the monopolist holding 
the patent for machine of type ν and quality q(ν, t). Note that the demand from the final good 
sector for machines in (6) is iso-elastic, so the unconstrained monopoly price is given by the 
usual formula with a constant markup over marginal cost. Throughout, we assume that:

Assumption 1. κ ≥ ( 1
1−β

)
1−β
β .

So after an innovation by an entrant, there will not be limit pricing. Instead, the entrant will be 
able to set the unconstrained profit-maximizing (monopoly) price.16 By implication, an entrant 
that innovates further after its own initial innovation will also be able to set the unconstrained 
monopoly price.17 Assumption 1 also implies that, when the highest quality machine is sold at 
the monopoly price, the final good sector will only use this machine type, and thus justifies the 
form of the final good production function in (2) which imposes that only the highest quality 
machine in each line will be used.

Since the demand for machines in (6) is iso-elastic and given the marginal cost 1 − β , the 
profit-maximizing monopoly price is

px(ν, t | q) = 1. (7)

Combining this with (6) implies

x(ν, t | q) = qL. (8)

Consequently, the flow profits of a firm with the monopoly rights on the machine of quality q
can be computed as:

π(ν, t | q) = βqL. (9)

16 This assumption is adopted for simplicity. Our results would not be affected if immediately after entry, new firms set 
a limit price as in Grossman and Helpman [32], though in this case we would have to keep track of changing markups 
for the first few incremental innovations after entry.
17 In this analysis, we are ignoring the incumbent’s potential incentives, after being replaced, to continue to invest 
in “incremental” innovations with the hope of eventually catching up with a new entrant. This is without much loss 
of generality, since such investment is unlikely to be profitable. In particular, let Ṽ (ν, t | q) denote the value of a just 
replaced incumbent. Then its optimal investment in incremental innovation is given by ̃z = arg maxz≥0 φ(z)(Ṽ (ν, t |
λq) − Ṽ (ν, t | q)) − zq . We have Ṽ (ν, t | λq) − Ṽ (ν, t | q) ≤ Ṽ (ν, t | λq) ≤ V (ν, t | λq) = vλq , where V is defined 
in (14) as the value function of an incumbent which has not been replaced by an entrant; and V (ν, t | λq) = vλq in a 
balanced growth path. From the first-order condition on z we have ̃z = (φ′)−1(

q

Ṽ (ν,t |λq)−Ṽ (ν,t |q)
) ≤ (φ′)−1( 1

vλ ) = z. 
Hence, the condition

φ(z) ≤ η(̂z)

is sufficient (though of course not necessary) to ensure that it is more profitable to invest in R&D for radical innovations 
(where η(̂z) is the equilibrium rate of success in such innovations derived below). This condition is thus also sufficient 
to ensure that it is not profitable for just-replaced incumbents to invest in incremental innovations.
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Next, substituting (8) into (2), we obtain that total output is given by

Y(t) = 1

1 − β
Q(t)L, (10)

where

Q(t) ≡
1∫

0

q(ν, t)dν (11)

is the average total quality of machines and will be the only state variable in this economy. Since 
we have assumed that q(ν, 0) > 0 for all ν, (11) also implies Q(0) > 0 as the relevant initial 
condition of our economy.18

As a by-product, we also obtain that the aggregate spending on machines is

X(t) = (1 − β)Q(t)L. (12)

Moreover, since the labor market is competitive, the wage rate at time t is

w(t) = ∂Y

∂L
= β

1 − β
Q(t). (13)

To characterize the full equilibrium, we need to determine R&D effort levels by incumbents 
and entrants. To do this, let us write the net present value of a monopolist with the highest quality 
of machine q at time t in machine line ν:

V (v, t | q) = Et

[ T (ν,t)∫
t

e− ∫ t+s
t r(t+̃s)ds̃

(
π(ν, t + s | q) − z(ν, t + s)q(t + s)

)
ds

]
, (14)

where T (ν, t) is a stopping time where a new entrant enters into the sector ν.19 Under optimal 
R&D choice of the incumbents, their value function V (ν, t | q) satisfies the standard Hamilton–
Jacobi–Bellman equation:

r(t)V (ν, t | q) − V̇ (ν, t | q)

= max
z(ν,t)≥0

{
π(ν, t | q) − z(ν, t)q(ν, t)

+ φ
(
z(ν, t)

)(
V (ν, t | λq) − V (ν, t | q)

) − ẑ(ν, t)η
(̂
z(ν, t)

)
V (ν, t | q)

}
, (15)

where ̂z(ν, t)η(̂z(ν, t)) is the rate at which radical innovations by entrants occur in sector ν at 
time t and φ(z(ν, t)) is the rate at which the incumbent improves its technology. The first term 
in (15), π(ν, t | q), is flow of profit given by (9), while the second term is the expenditure of 

18 One might be worried about whether the average quality Q(t) in (11) is well-defined, since we do not know how 
q(ν, t) will look like as a function of ν and the function q(·, t) may not be integrable. This is not a problem in the current 
context, however. Since the index ν has no intrinsic meaning, we can rank the ν’s such that ν 
→ q(ν, t) is nondecreasing. 
Then the average in (11) exists when defined as a Lebesgue integral.
19 The quality q(ν, t + s) follows a Poisson process such that q(ν, t + s + 
s) = λq(ν, t + s) with probability
φ(z(ν, t + s))
s (obviously with 
s infinitesimal), and if the R&D of the entrants into the sector is ̂z(ν, t + s1), then 
the distribution of T (ν, t) is

Pr
(
T (ν, t) ≥ t + s

) = Et

[
e− ∫ s

0 ẑ(ν,t+s1)η(̂z(ν,t+s1))ds1
]
.
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the incumbent for improving the quality of its machine. The second line includes changes in the 
value of the incumbent due to innovation either by itself (at the rate φ(z(v, t)), the quality of its 
product increases from q to λq) or by an entrant (at the rate ̂z(ν, t)η(̂z(ν, t)), the incumbent is 
replaced and receives zero value from then on).20 The value function is written with a maximum 
on the right hand side, since z(ν, t) is a choice variable for the incumbent.

Free entry by entrants implies that we must have21:

η
(̂
z(ν, t)

)
V

(
ν, t

∣∣ κq(ν, t)
) ≤ q(ν, t), and

η
(̂
z(ν, t)

)
V

(
ν, t

∣∣ κq(ν, t)
) = q(ν, t) if ẑ(ν, t) > 0, (16)

which takes into account the fact that by spending an amount q(ν, t), the entrant generates a 
flow rate of innovation of η(̂z), and if this innovation is successful (flow rate η(̂z(ν, t))), then 
the entrant will end up with a machine of quality κq , thus earning the (net present discounted) 
value V (ν, t | κq). The free entry condition is written in complementary-slackness form, since it 
is possible that in equilibrium there will be no innovation by entrants.

Finally, maximization by the representative household implies the familiar Euler equation,

Ċ(t)

C(t)
= r(t) − ρ

θ
, (17)

and the transversality condition takes the form

lim
t→∞ e− ∫ t

0 r(s)ds

[ 1∫
0

V (ν, t | q)dν

]
= 0. (18)

This transversality condition follows because the total value of corporate assets is∫ 1
0 V (ν, t | q)dν. Even though the evolution of the quality of each machine is stochastic, the 

value of a machine of type ν and quality q at time t , V (ν, t | q) is non-stochastic. Either q is 
not the highest quality in this machine line, in which case the value function of the firm with a 
machine of quality q is 0, or alternatively, V (ν, t | q) is given by (14).

We summarize the conditions for an equilibrium as follows:

Definition 1. An equilibrium is given by time paths of {C(t), X(t), Z(t)}∞t=0 that satisfy
(1), (5), (12) and (18); time paths for R&D expenditure by incumbents and entrants,
{z(ν, t), ̂z(ν, t)}∞v∈[0,1],t=0 that satisfy (15) and (16); time paths of prices and quantities of each 
machine and the net present discounted value of profits, {px(ν, t | q), x(ν, t | q), V (ν, t | q)}∞t=0
given by (7), (8) and (15); and time paths of wage and interest rates, {w(t), r(t)}∞t=0 that satisfy 
(13) and (17).

In addition, we define a BGP (balanced growth path) as an equilibrium path in which inno-
vation, output and consumption grow at a constant rate. Notice that in such a BGP, aggregates 
grow at the constant rate, but there will be firm deaths and births, and the firm size distribution 

20 The fact that the incumbent has zero value from then on follows from the assumption that, after being replaced, 
a previous incumbent has no advantage relative to other entrants (see Footnote 17).
21 Since there is a continuum of machines ν ∈ [0, 1], all optimality conditions should be more formally stated as “for all 
ν ∈ [0, 1] except subsets of [0, 1] of zero Lebesgue measure” or as “almost everywhere”. We will not add this qualification 
to simplify the notation and the exposition.
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may change. We will discuss the firm size distribution in Section 3 and will refer to a BGP equi-
librium with a stationary (constant) distribution of normalized firm sizes as “a stationary BGP 
equilibrium”. For now, we refer to an allocation as a BGP regardless of whether the distribution 
of (normalized) firm sizes is stationary.

Definition 2. A balanced growth path (hereafter BGP) is an equilibrium path in which innovation, 
output and consumption grow at a constant rate.

In what follows, we will focus on linear BGP, where the value function of a firm with quality 
q is linear in q , and often refer to it simply as the “BGP”. In particular22:

Definition 3. A linear BGP is a BGP where V (ν, t | q) = vq for all ν, t (for some v > 0).

2.3. Existence and characterization

While a (linear) BGP always exists, because innovation by incumbents may increase the 
demand for the inputs of other incumbents (through what is sometimes referred to as “aggre-
gate demand externalities”), there is a force pushing towards multiple BGPs. Counteracting this, 
greater innovation, by increasing the growth rate, also increases the interest rate and thus makes 
further innovation less profitable. In the remainder of the analysis, we focus on the case where 
the BGP is unique. The following is a sufficient condition for this.

Assumption 2a. The intertemporal elasticity of substitution of the representative household, θ , 
is sufficiently high, i.e.,

θ ≥ 1

1 + minz≥0{ (φ′(z))2

−φ′′(z)φ(z)
}
.

Intuitively, when the intertemporal elasticity of substitution is higher, from the Euler equa-
tion (17), an increase in growth rate generated by an increase in innovation leads to a greater 
rise in interest rate. This makes innovation by other incumbents less profitable, ensuring that the 
second force mentioned above dominates the first one.

Assumption 2a is not very restrictive. For example, if φ(·) is linear, this assumption simply 
requires θ ≥ 0, which is of course always satisfied. If, on the other hand, φ(·) has the functional 
form in (3), this assumption requires θ ≥ α.

The requirement that consumption grows at a constant rate in the BGP implies that r(t) = r , 
from (17). Now focusing on linear BGP, where V (q) = vq , we have that V̇ (ν, t | q) = 0. Hence 
the functional equation that determines the value of incumbent firms (15) can be written as

rv = βL + max
z≥0

{
φ(z)(λ − 1)v − z

} − ẑη(̂z)v (19)

and assuming positive entry rate, the free-entry condition (16) can be written as

η(̂z)κv = 1. (20)

22 We conjecture that all BGPs are in fact linear, but we are unable to prove this except when φ is linear.
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Let z(v) ≡ arg maxz≥0 φ(z)(λ − 1)v − z and ̂z(v) ≡ η−1( 1
κv

). Then clearly z(v) is strictly in-
creasing in v (recall that φ(z) is strictly concave) and ̂z(v) is strictly increasing in v (recall that 
η(z) is decreasing in z). Moreover, since zη(z) is strictly increasing in z, ̂z(v)η(̂z(v)) is strictly 
increasing in v. From the Euler equation (17), we also have Ċ(t)/C(t) = (r − ρ)/θ = g, where 
g is the growth rate of consumption and output.

From (10), the growth rate of output can be expressed as

Ẏ (t)

Y (t)
= Q̇(t)

Q(t)
.

From (19) and (20), in a linear BGP, for all machines, incumbents and entrants will undertake 
constant R&D z(v) and ̂z(v), respectively. Consequently, the growth rate of Q(t) is23

g = Q̇(t)

Q(t)
= φ

(
z(v)

)
(λ − 1) + ẑ(v)η

(̂
z(v)

)
(κ − 1).

Combining this equation with Eqs. (17), (19) gives us a single equation that determines v and 
thus the key value function V (ν, t | q) in (15):

βL = ρv + (θ − 1)φ
(
z(v)

)
(λ − 1)v + z(v) + (

θ(κ − 1) + 1
)̂
z(v)η

(̂
z(v)

)
v. (21)

The right-hand side of this equation is equal to 0 at v = 0 and goes to +∞ as v goes to +∞. 
Thus, a value of v∗ > 0 satisfying this equation, and thus a linear BGP, always exist. Moreover, 
Assumption 2a implies that the right-hand side is strictly increasing, so that this v∗ > 0, and thus 
the BGP, is unique. Given v∗, the other equilibrium objects are easy to compute. The R&D rates 
of incumbents and entrants are simply given by z∗ = z(v∗) and ̂z∗ = ẑ(v∗). The GDP growth rate 
is

g∗ = φ
(
z∗)(λ − 1) + ẑ∗η

(̂
z∗)(κ − 1). (22)

The BGP interest rate, again from the Euler equation (17), is obtained as

r∗ = ρ + θg∗. (23)

Notice that Eq. (22) shows the decomposition of the aggregate growth rate, g∗, into two 
components on the right hand side. The first term, φ(z∗)(λ − 1), comes from innovation by 
incumbents. The second term, ̂z∗η(̂z∗)(κ − 1), comes from the innovation of the entrants.

The final step is to verify that the transversality condition of the representative household, 
(18) is satisfied. The condition for this is r∗ > g∗ which is also satisfied if θ ≥ 1 (or less strin-
gently, if ρ > (1 − θ)g∗). This discussion thus establishes the following proposition (proof in the 
text).

23 In a small interval of time 
t , there will be φ(z(v))
t sectors that experience one innovation by the incumbent 
(increasing their productivity by λ) and ̂z(v)η(̂z(v))
t sectors that experience replacement by new entrants (increasing 
productivity by a factor of κ). The probability that there will be two or more innovations of any kind within an interval 
of time 
t is o(
t). Therefore, we have

Q(t + 
t) = (
λφ

(
z(v)

)

t

)
Q(t) + (

κẑ(v)η
(̂
z(v)

)

t

)
Q(t)

+ (
1 − φ

(
z(v)

)

t − ẑ(v)η

(̂
z(v)

)

t

)
Q(t) + o(
t).

Now subtracting Q(t) from both sides, dividing 
t and taking the limit as 
t → 0, we obtain the formula for the growth 
rate of Q(t).
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Proposition 1. Suppose that Assumption 2a holds and ρ > (1 − θ)g∗, then there exists a unique 
linear BGP with the value function of an incumbent with quality q given by V (q) = v∗q , where 
v∗ is the unique solution to (21), the aggregate growth rate g∗ is given by (22), and the interest 
rate r∗ is given by (23). Starting with any initial condition, the economy immediately jumps to 
this BGP (i.e., always grows at the rate g∗).

It is useful to consider two special cases of our economy to understand the forces driving 
growth in this proposition. In the first case, we can shut off radical innovations (e.g., by shutting 
down entry by setting η(·) = 0). In this case, though the model would lose its Schumpeterian 
character, there would still be linear growth because of the AK structure of the model coming 
from incumbent innovation. This growth rate can be obtained by removing the terms with ̂z(v) in 
(21) and (22). In the second case, we can shut off incremental innovations by incumbents (e.g., by 
setting φ(·) = 0). This case would of course correspond to the baseline quality ladder model (e.g., 
Chapter 14.1 in Acemoglu [2]), and can be obtained by removing the terms with z(v) in (21) and 
(22) to determine the unique linear BGP. In the general case considered in Proposition 1, both of 
these sources of growth are present and contribute to (but also compete in the determination of) 
overall growth of the economy.

These two sources create competing effects on growth. In particular, if the contribution of 
entry to growth increases, then, in response, the contribution of incumbent innovations decreases 
(because greater entry reduces the value of an incumbent and in particular the value v∗, discour-
aging incremental innovations). In fact, these competing effects imply that, contrary to standard 
Schumpeterian models, the effect of policies that discourage entry are ambiguous on the BGP 
growth rate of the economy. It can be shown that such policies (e.g., a tax on entrants) will reduce 
growth if |φ′′(̂z∗)| > (κ − 1)(λ − 1)(βL)2/ρ, and increase it otherwise.

The assumptions leading to sustained endogenous growth in this model are also familiar from 
the literature. First, the final good production function, Eq. (2), exhibits constant returns to scale 
in product quality. Second, the R&D production function (innovation possibilities frontier) uses 
the final good as in the baseline Schumpeterian model considered in Acemoglu [2] (and this 
contrasts with the use of labor in Grossman and Helpman [32], for example), but does not have 
major implications for our results.24

Eq. (22) also shows that the BGP growth rate of the economy can be decomposed into growth 
emanating from incremental innovations of incumbents, the first term on the RHS, and growth 
coming from the radical innovations of entrants, given by the second term on the RHS. We return 
to this decomposition and explore its quantitative implications in Section 4.

Another interesting implication of our model concerns firm size dynamics. The size of a firm 
can be measured by its sales, which is equal to x(ν, t | q) = qL for all ν and t . We have seen 
that the quality of an incumbent firm increases at the flow rate φ(z∗), while the firm is replaced 
at the flow rate ẑ∗η(ẑ∗). Hence, for 
t sufficiently small, the stochastic process for the size of a 
particular firm is given by

x(ν, t + 
t | q) =

⎧⎪⎨⎪⎩
λx(ν, t | q) with probability φ(z∗)
t + o(
t)

0 with probability ẑ∗η(̂z∗)
t + o(
t)

x(ν, t | q) with probability (1 − φ(z∗)
t − ẑ∗η(̂z∗)
t) + o(
t)

(24)

24 As a result of these features, as Eq. (21) shows, our economy exhibits scale effect: a higher population leads to a 
higher value for the intermediate-good producers, and thus to more innovation and growth.
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for all ν and t . Firms therefore have random growth, and surviving firms expand on average. 
However, firms also face a probability of bankruptcy (extinction). In particular, denoting the 
probability that a particular incumbent firm that started production in machine line ν at time s
will be bankrupt by time t ≥ s by P(t | s, ν), we clearly have limt→∞ P(t | s, ν) = 1, so that 
each firm will necessarily die eventually. Eq. (24) satisfies Gibrat’s Law, which postulates that 
firm growth is independent of size (e.g., Sutton [62], Gabaix [31]).25 This random process of firm 
growth also leads to non-degenerate distribution of firm sizes as measured by firm size (sales) 
normalized by average size (sales). In particular, letting X1(t) ≡ X(t)/(1 −β) = ∫ 1

0 x(ν, t | q)dν, 
with X(t) defined in (4),26 we have

x̃(ν, t | q) ≡ x(ν, t | q)

X1(t)
= x̃(t) = q̃(t) ≡ q(t)

Q(t)
,

where the first equality defines the variable, the last one defines q̃(t). The law of motion of 
normalized firm size is similar to (24) introduced above, except that we are now keeping track 
of the (leading) firm producing in a given sector rather than a given firm. Hence, after entry (the 
second line), the relevant firm size is not zero, but is equal to the size of the new entrant. Noting 
that in BGP, Ẋ1(t)/X1(t) = g∗ > 0, for 
t small, the law of motion of normalized firm sizes can 
be written as

x̃(t + 
t) =

⎧⎪⎨⎪⎩
λ

1+g∗
t
x̃(t) with probability φ(z∗)
t

κ
1+g∗
t

x̃(t) with probability ẑ∗η(̂z∗)
t

1
1+g∗
t

x̃(t) with probability 1 − φ(z∗)
t − ẑ∗η(̂z∗)
t.

The growth decomposition (22) implies that ̃x(t) is a random walk, i.e., Et [̃x(t + 
t)] = x̃(t).27

Moreover, x̃(t) is positive, so by Martingale convergence theorem, x̃(t) converges to a random 
variable. However, x̃(t) must have a finite mean—by definition E0[̃x(t)] = 1, so the limiting 
random variable only takes either zero or infinity values.28 In other words, the distribution of 
normalized firm sizes will continuously expand and a stationary distribution does not exist in a 
linear BGP. This is because as time goes to infinity, a vanishingly small fraction of firms become 
arbitrarily large, making the remaining firms arbitrarily small relative to average firm size in the 
economy.29 In the next section, we show that by adding another type of (imitative) entrant, which 
acts as a reflecting-lower barrier on firm sizes, we obtain a stationary distribution of firm sizes 
in a BGP. This firm size distribution resembles the one observed in the data. The stationary firm 
size distribution has a Pareto tail with a shape parameter approximately equal to one (i.e., the 

25 The most common form of Gibrat’s Law involves firm sizes evolving according to the stochastic process St+1 =
γt St + εt , where γt is a random variable with mean 1 and εt is a random variable with mean zero. Both variables are 
orthogonal to St . The law of motion (24) is a special case of this general form.
26 Sales normalized by the equilibrium wage rate, w(t), have exactly the same behavior, since the equilibrium wage rate 
also scales with average quality, Q(t).
27 We thank an anonymous referee for suggesting this result.
28 We show this result by contradiction. Suppose that the limiting random variable has positive mass between zero and 
infinity, then similar to Lemma 11, we can show that its density function, f (q), satisfies f (q) ≥ B

q log(q)
for some B > 0

and for all q ≥ q . This inequality implies infinite mean because 
∫ ∞
q0

B
q log(q)

qdq = ∞.
29 The nature of the “limiting distribution” is therefore similar to the “immiserization” result for income distribution in 
Atkeson and Lucas’s [15] economy with dynamic hidden information; in the limit, all firms have approximately zero size 
relative to the average X1(t) and a vanishingly small fraction of firms become arbitrarily large (so that average firm size 
X1(t) remains large and continues to grow).
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so-called “Zipf distribution,” which, as discussed above, appears to be a good approximation to 
US data).

3. Firm dynamics and growth with knowledge spillovers

The model so far and the growth decomposition provided in Eq. (22) assume only one type of 
new entrants which are entrants with radical innovations. In reality, some entrants start out not 
with radical innovations but by building on the knowledge spillovers created by existing firms 
(e.g., see Luttmer [47] and Acemoglu et al. [4]). In this section, we extend the model to include 
knowledge spillovers that allow imitation for (some) entrants, and show that an extended model 
of this type maintains the qualitative features of the simpler model presented so far but also 
generates a rich stationary firm size distribution along the BGP.

More specifically, we allow for costly (“imitative”) entry building on knowledge spillovers. 
Potential entrants can pay some cost to obtain technology with quality proportional to the current 
average quality in the economy. This implies that when a sector falls significantly below average 
quality, imitative entry becomes profitable. We then show that the economy incorporating this 
type of imitative entry has a well-defined equilibrium. Moreover, when the technology of entry 
by imitation is not very productive, then the BGP equilibrium is arbitrarily close to the one that 
is characterized in Proposition 1. We also derive a general analog to the growth decomposition 
in Eq. (22), now consisting of three components: innovation by incumbents, by radical entrants, 
and by entrants by knowledge spillover.

3.1. The economy with imitative entry

We consider a third type of innovation based on imitation relying on knowledge spillovers 
from the current knowledge base of the economy. A new firm can enter in any sector ν ∈ [0, 1]
with a technology qe(ν, t) = ωQ(t), where ω ≥ 0 and Q(t) is average quality of machines in the 
economy given by (11).30 The cost of this type of innovation is assumed to be μeωQ(t). The fact 
that the cost should be proportional to average quality is in line with the structure of the model 
so far.31

Firm value is again given in (14) except that T (ν, t) is now the stopping time where either 
an entrant or an imitator enters and replaces the monopolist. Put differently, all firms solve the 
maximization problem as in (15), but they also take into account the possibility of entry by 
imitation as well. It is then straightforward that there will exist some ε > 0 such that entry by 
imitation is profitable if

q(ν, t) ≤ εQ(t),

and thus there will be no sectors with quality less than ε times average quality (clearly, ε is a 
function of ω, and of course, ε = 0 when ω = 0). The baseline model is then the special case 
where ω = ε = 0, i.e., where there is no imitation. We will show that a BGP equilibrium and 
the stationary distribution in this economy with imitation are well-defined, and as ω → 0, the 

30 For tractability we assume that ω is constant as opposed to a random variable realized after entry as in Luttmer [47]
and Acemoglu et al. [4], but this is without any important consequences for the implications of the model.
31 There are also alternative ways of introducing entrants by knowledge-spillover. An alternative, which leads to very 
similar results, is an environment where firms have to pay a fixed cost in terms of labor to operate and existing firms are 
replaced by entrants by knowledge spillover. See also Luttmer [47,49] and Atkeson and Burstein [13,14].
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value function, the innovation decisions and the growth rate converge to those characterized in 
the baseline economy (cf. Proposition 1). Moreover, for ω > 0 but small, the stationary firm size 
distribution has a Pareto tail.32

In order to prove the existence of a stationary BGP in the economy with imitation, we need 
a slightly stronger condition on the inverse of the intertemporal elasticity of substitution, θ , than 
in Assumption 2a.

Assumption 2b. θ ≥ 1.

We also impose the following technical condition.

Assumption 3. Let εη(z) ≡ −zη′(z)/η(z) be the elasticity of the entry function η(z). Then

max
z>0

εη(z) ≤ 1 − 1

κθ
.

Under functional form (3) for η, Assumption 3 is equivalent to γ ≤ 1 − κ−θ , and implies 
that the entry function is not too “elastic”. This assumption is used in Lemma 4 in Appendix A
to ensure the boundedness of the value function of incumbent firms when both types of entry 
are present. When there is no entry by creative destruction, i.e., when the economy has only 
the incumbents and the imitators, the same description of the stationary BGP applies without 
Assumption 3. We also note for future reference that the Pareto distribution takes the form

Pr[̃x ≤ y] = 1 − Γy−χ

with Γ > 0 and y ≥ Γ ; χ is the shape parameter (exponent) of the Pareto distribution. We say 
that a distribution has a Pareto tail if its behavior for y large can be approximated by Pr[̃x ≥ y] ∝
Γy−χ .

Proposition 2. Suppose the BGP equilibrium in the baseline economy is described by Proposi-
tion 1, in particular with v∗, g∗ and r∗ as given by to (21), (22) and (23), and Assumptions 2b
and 3 are satisfied. Then there exist 0 < μ < μ, 
 > 0 and ω > 0 such that for any μe ∈ (μ,μ)

and ω ∈ (0,ω), there exists a BGP with the following properties:

1. There is imitative entry whenever q(ν, t) ≤ ε(ω)Q(t), where 0 < ε(ω) ≤ ω(1 − β)
1−β
β .

2. The equilibrium growth rate is g(ω) ∈ (g∗, g∗ + 
) and satisfies

lim
ω→0

g(ω) = g∗.

3. The value function of the incumbents above the exit threshold ε(ω)Q(t) in this economy, 
normalized by quality, Vω(q)/q , converges uniformly to the value function in the baseline 
economy normalized by quality, V (q)/q = v∗. Formally, for any δ > 0

lim
ω→0

sup
q≥δQ

∣∣∣∣Vω(q) − V (q)

q

∣∣∣∣ = 0.

32 Note that because this type of imitative entry is costly, and the cost would be the same for incumbents vs. entrants, 
by a similar reasoning to Arrow’s replacement effect, incumbents that become very low productivity would still not find 
it profitable to use this technology (i.e., before the incumbents do so, entrants would do it).
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This proposition ensures that the growth rate of the economy with imitation is well behaved 
and it is “close” to the equilibrium of the baseline economy when ω is small. Note also that our 
requirement μe ≥ μ (together with ω ≤ ω) ensures that entry by imitation is not profitable when 
the entrants charge a limit price in the competition against the incumbent. As a result, entrants 
use imitation to enter in a sector only when the quality of the sector falls sufficiently below the 
average quality so that these entrants can charge the monopoly price after entry. The condition 
μe < μ ensures that this type of entry is not too costly so that there will be some imitation in 
equilibrium.

The next proposition provides a simple growth decomposition between incumbents, radical 
entrants, and imitative entrants generalizing the one provided in Eq. (22) above.

Proposition 3. In a stationary BGP, the growth rate of the economy has the following decompo-
sition:

g = (λ − 1)EF

[
φ
(
z(̃q)

)
q̃
]︸ ︷︷ ︸

Innovation from incumbents

+ (κ − 1)EF

[̂
z(̃q)η

(̂
z(̃q)

)
q̃
]︸ ︷︷ ︸

Innovation from radical entrants

+ εgf (ε)(ω − ε)︸ ︷︷ ︸
Innovation from imitative entrants

. (25)

Proof. This follows from the proof of Proposition 2. In particular, Step 3 in the sketch of the 
proof for Proposition 2, we show that the implied growth rate g′(g) satisfies the decomposition 
(25). In a stationary BGP, g′(g) = g, thus g also satisfies the growth decomposition. �

We next show that, as ω becomes small, this economy admits a stationary distribution of 
normalized firm sizes with a Pareto tail with the shape parameter approaching 1.

Proposition 4. The stationary equilibrium distribution of firm sizes in the economy with imitation 
(characterized in Proposition 2) exists and has a Pareto tail with the shape parameter χ =
χ(ω) > 1 in the sense that for any ξ > 0 there exist B, B and ̃x0 such that the density function 
of the firm size distribution, f (̃x), satisfies

f (̃x) < 2Bx̃−(χ−1−ξ), for all x̃ ≥ x̃0, and

f (̃x) >
1

2
Bx̃−(χ−1+ξ), for all x̃ ≥ x̃0.

In other words, f (̃x) = x̃−χ−1ϕ(̃x), where ϕ(̃x) is a slow-varying function. Moreover

lim
ω→0

χ(ω) = 1.

Proof. The detail of the proof in Appendix A and follows from the proof of Proposition 2. �
This result on the stationary firm size distribution has several parallels with existing results in 

the literature, for example, Gabaix [31] and Luttmer [47–49]. In particular, as in these papers, 
the stationary firm size distribution is obtained by combining firm growth following Gibrat’s Law 
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with a lower bound on (relative) firm size. These papers also have limiting results such that when 
the lower bound becomes negligible the size distribution converges to Zipf’s law, i.e., the tail 
index converges to 1 as in our proposition.33 There are also important differences, however. First, 
Gibrat’s Law is derived endogenously here from the innovation decisions of continuing firms and 
entrants, and in fact, the growth rate of output in the aggregate is endogenously determined.34

Second, the equilibrium is obtained from the optimization problem of firms that recognize the 
possibility that there will be entry by imitation if their quality falls significantly relative to the 
average.

We next provide a sketch of the proof of Proposition 2.

3.2. Sketch of the proof of Proposition 2

The proof consists of showing that for each μe ∈ (μ,μ) and ω ∈ (0,ω), there exists a BGP 
with the growth rate given by g(ω). The first step proves the existence of the value function of 
the incumbents under the threat of entry by imitation. In this step we show that the relevant state 
variable is the relative quality of the incumbents q(ν, t)/Q(t). The second step establishes the 
existence of and characterizes the form of the stationary firm size distribution when the incum-
bents and the entrants follow the strategies determined using the value function in the first step. 
Finally, the last step establishes the existence of a BGP with the value and investment functions 
derived from the first step and the stationary firm size distribution derived in the second step. 
Luttmer [47,49] follow similar steps in proving the existence of a BGP for an economy with het-
erogeneous firms, but relying on a specific closed-form of the value function and the stationary 
distribution. These closed-forms in turn exploit the fact that growth is exogenous, whereas the 
growth rate is determined endogenously in our economy.35

There are two difficulties we must overcome in the first step. The first one is that the value 
functions are given by a differential equation with deviating (advanced) arguments because 
the right-hand side involves V evaluated at λq and κq . As a result, we cannot apply standard 
existence proofs from the theory of ordinary differential equations. Instead, we use techniques de-
veloped in the context of monotone iterative solution methods, see, for example, Jankowski [37]. 
The second difficulty arises because we need to show that the value function satisfies some prop-
erties at infinity. This non-standard boundary problem is solved following the approach in Staikos 
and Tsamatos [61].

Step 1: For each g ∈ (g∗, g∗ +
), we show the existence of a value function of an incumbent 
in sector ν at time t which takes the form

Vg(ν, t | q) = Q(t)V̂g

(
q(ν, t)

Q(t)

)
, (26)

33 The gamma distribution used in Luttmer [47] has a Pareto tail according to the definition in Proposition 4.
34 Footnote 24 in Atkeson and Burstein [13] provides a heuristic derivation of the relationship between the endogenous 
investment of incumbents and the endogenous tail index of the stationary distribution of firm sizes. However, a crucial 
step in this heuristic derivation is that innovation rates are invariant across firms in the presence of fixed cost. This 
property only holds approximately in the limit when firm size is sufficiently large. Similarly, the threat of imitative entry 
in our model makes the incumbent firms’ innovation rate a function of firm size. Thus a full derivation needs to take this 
dependence into account, which is what our rigorous approach accomplishes.
35 Atkeson and Burstein [13,14] also present models with endogenous innovation and firm heterogeneity. However, in 
these models, growth is either exogenous or given as the equilibrium of a semi-endogenous growth model, making it 
essentially exogenous. This ensures a block-recursive structure in which interest rate and growth rates are independent 
of firm size distribution. The general equilibrium interactions present in our model arise whenever equilibrium objects, 
in particular the interest and the growth rates, depend on the endogenous firm size distribution.
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and a threshold εg(ω) such that an imitator will pay the cost μeωQ(t) to imitate and enter with 
quality ωQ(t) into sector ν at time t and replace an incumbent if q(ν, t) ≤ εg(ω)Q(t). The value 
of the incumbent depends only on the current average quality, Q(t), and the gap between its 
current quality and the average quality, q(ν, t)/Q(t). Plugging (26) in (15), and using the fact 
that

V̇g(ν, t | q) = gQ(t)V̂g

(
q(ν, t)

Q(t)

)
− gQ(t)

q(ν, t)

Q(t)
V̂ ′

g

(
q(ν, t)

Q(t)

)
,

we obtain that

(r − g)V̂g(̃q) + gq̃V̂ ′
g(̃q) = βLq̃ + max

z(ν,t)≥0

{
φ
(
z(ν, t)

)(
V̂g(λq̃) − V̂g(̃q)

) − z(ν, t )̃q
}

− ẑ(ν, t)η
(̂
z(ν, t)

)
V̂g(̃q), (27)

where r = ρ + θg and q̃(ν, t) = q(ν, t)/Q(t). The free-entry condition for radical innovation, 
(16), can then be written as

η
(̂
z(ν, t)

)
V̂g

(
κq̃(ν, t)

) = q̃(ν, t).

Moreover, the free-entry condition for imitation implies

V̂g(ω) = μeω. (28)

Since imitators will replace the incumbent in sector ν at time t if q(ν, t) ≤ εgQ(t), we also have 
the following boundary condition

V̂g(εg) = 0. (29)

In Appendix A, we show that when μe ∈ (μ,μ), there is imitation in equilibrium but only when 
imitators can charge monopoly price after entry. Equilibrium innovation rates, zg(̃q) and ̂zg(̃q), 
can then be derived from the solution to (27).

To establish the existence of a solution V̂g(̃q) to the functional equation (27), we first con-
struct functional bounds, V g and V g , such that V g(̃q) ≤ V̂g(̃q) ≤ V g(̃q). The result on uniform 
convergence of V̂g(̃q) then follows by establishing that V g and V g converge uniformly to V (q)

as g goes to g∗.
Step 2: The innovation rates, zg(̃q) and ̂zg(̃q), together with the entry rule of the imitators and 

the growth rate g(ω) of the average quality yields a stationary distribution over the normalized 
sizes ̃q with distribution function F(·) satisfying the following conditions:

If y ≥ ω, then

0 = F ′(y)yg −
y∫

y
λ

φ
(
z(̃q)

)
dF (̃q) −

y∫
y
κ

ẑ(̃q)η
(̂
z(̃q)

)
dF (̃q). (30)

If y < ω, then

0 = F ′(y)yg − F ′(ε)εg −
y∫

y
λ

φ
(
z(̃q)

)
dF (̃q) −

y∫
y
κ

ẑ(̃q)η
(̂
z(̃q)

)
dF (̃q) (31)

and

F(y) = 0 for y ≤ ε.
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We will derive these expressions formally in Appendix A, and to make the dependence on the 
growth rate of average quality explicit, we will write the solution as Fg . Intuitively, given y > 0, 
the mass of firms with size moving out of the interval (ε, y) consists of firms (sectors) with 
size between ( y

λ
, y) that are successful in incremental innovation, 

∫ y
y
λ

φ(z(̃q))dF (̃q), and firms 

(sectors) with size between ( y
κ
, y), where there is a radical innovation, 

∫ y
y
κ

ẑ(̃q)η(̂z(̃q))dF (̃q). 

When y < ω, we must also add the mass of firms being replaced by imitators with relative 
quality ω. This mass consists of firms that are in the neighborhood of ε, do not experience any 
innovation, and are therefore drifted to below ε due to the growth rate g of the average quality Q; 
it is equal to F ′(ε)εg. By definition of a stationary distribution, the total mass of firms moving 
out of the interval (ε, y) must be equal to the mass of firms moving into the interval. This mass 
consists of firms around y that do not experience any innovation and thus drift into this interval 
due to growth at the rate g (given by F ′(y)yg).

Step 3: This analysis gives an implied growth rate of the average product quality g′ = Q̇/Q

as a function of the current growth rate g, the innovation rates, zg(̃q), and ̂zg(̃q), the imitation 
threshold εg , and the equilibrium stationary distribution Fg. In particular,

g′(g) = (λ − 1)EFg [φ(z(̃q))̃q] + (κ − 1)EFg [̂zg(̃q)η(̂zg(̃q))̃q]
1 − εgF ′

g(εg)(ω − εg)
. (32)

This formula, derived formally in Appendix A, is similar to the decomposition of growth 
in (22). The numerator combines the innovation rates of incumbents and entrants, respectively 
(λ − 1)EFg [φ(z(̃q))̃q] and (κ − 1)EFg [̂zg(̃q)η(̂zg(̃q))̃q], where EFg is used as a shorthand for 
the integrals using the density dFg(̃q) as in (30) and (31). The denominator, on the other hand, is 
the contribution of imitation to growth. The higher is the gap ω − εg , the more important is this 
component. Finally the equilibrium growth rate g∗(ω) is a solution to the equation

D(g) ≡ g′(g) − g = 0,

where g′(g) is given by (32). In Appendix A, we establish the existence of a solution g∗(ω) to 
this equation.

4. Some suggestive numbers and simulations

In this section, we present the quantitative implications of the growth decomposition in 
Eq. (22) and use simulations to compute the implied stationary firm size distribution.

4.1. Baseline parameters

The explicit characterization of equilibrium enables us to obtain simple expressions for how 
much of total productivity growth is driven by innovation by entrants (creative destruction) and 
how much of it comes from productivity improvements by incumbents. In particular, we can use 
Eq. (22), which decomposes growth into the component coming from incumbent firms (the first 
term in that equation) and that coming from new entrants (the second term).

Our purpose is not to undertake a systematic estimation of the parameters of the model or 
calibration, but to provide some illustrative numbers. We normalize population to L = 1 and 
choose the following standard numbers:

g∗ = 0.02, ρ = 0.01, r∗ = 0.05 and θ = 2,
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Table 1

Parameter values r∗/η(ẑ∗)ẑ∗ r∗/φ(z∗) (κ − 1)η(ẑ∗)ẑ∗/g∗

1. κ = 3 λ = 1.2 β = 2/3 A = 0.0977 α = 0.9 14.96 0.75 0.333
2. κ = 2 λ = 1.2 β = 2/3 A = 0.0977 α = 0.9 7.34 0.75 0.340
3. κ = 4 λ = 1.2 β = 2/3 A = 0.0977 α = 0.9 22.58 0.75 0.332
4. κ = 3 λ = 1.1 β = 2/3 A = 0.0977 α = 0.9 7.15 0.83 0.699
5. κ = 2 λ = 1.1 β = 2/3 A = 0.0977 α = 0.9 3.55 0.84 0.703
6. κ = 3 λ = 1.2 β = 2/3 A = 0.0488 α = 0.9 7.15 1.66 0.699
7. κ = 3 λ = 1.2 β = 1/2 A = 0.0977 α = 0.9 14.03 0.77 0.356
8. κ = 3 λ = 1.2 β = 2/3 A = 0.0977 α = 0.8 9.48 1.05 0.527

Note. This table reports flow rates of innovation by entrants (r∗/η(ẑ∗)ẑ∗), incumbents (r∗/φ(z∗)), and the fraction of 
productivity growth accounted for by entrants ((κ − 1)η(ẑ∗)ẑ∗/g∗). In each case, L = 1, θ = 2, ρ = 0.01, and B and A
are chosen such that r∗ = 0.05 and g∗ = 0.02.

where θ , the intertemporal elasticity of substitution, is pinned down by the choice of the other 
three numbers. The first three numbers refer to annual rates (implicitly defining 
t = 1 as one 
year). The remaining variables will be chosen so as to ensure that the equilibrium growth rate is 
indeed g∗ = 0.02. As a benchmark, let us take β = 2/3, which implies that two thirds of national 
income accrues to labor and one third to profits. Assumption 1 then requires that κ > 1.7. We will 
use the benchmark value of κ = 3 so that entry by new firms is sufficiently “radical” as suggested 
by some of the qualitative accounts of the innovation process (e.g., Freeman [30], Scherer [57]). 
Innovation by incumbents is taken to be correspondingly smaller, in particular λ = 1.2, so that 
productivity gains from a radical innovation are about ten times that of a standard “incremental” 
innovation by incumbents (i.e., (κ − 1)/(λ − 1) = 10). For the functions φ(z) and η(z), we 
adopt the functional form in (3) and choose the benchmark values of α = 0.9 and γ = 0.5. The 
remaining two parameters A and B will be chosen to ensure g∗ = 0.02 with two-thirds coming 
from the innovation of the incumbents and one-third coming from the entrants, i.e., the firm term 
in (22) φ(z∗)(λ − 1) equals 0.0133 and the second term ̂z∗η(̂z∗)(κ − 1) equals 0.0067. Given 
the value of κ , we obtain ̂z∗η(̂z∗) equals 0.0033. Given the interest rate of r∗, this corresponds to 
radical innovation on average once every 15 years (r∗/̂z∗η(̂z∗)). Similarly, the rate of incremental 
innovation is once very nine months.

Varying these baseline parameters shows that the model can lead to quite different decompo-
sitions of productivity growth between incumbents and entrants, and a more careful empirical 
investigation of the fit of the model is necessary (though the parameters that would be required 
for this need to be estimated).

Table 1 shows how these numbers change as we vary the parameters β , κ , λ and α. The 
first five columns of the table give the choices of parameters. The value of B is chosen so that 
the equilibrium growth rate g∗ = 0.02. The next two columns report the innovation rate by the 
entrants, r∗/ẑ∗η(ẑ∗), and by the incumbents, r∗/φ(z∗). The final column reports the fraction of 
total productivity growth accounted for by entrants, i.e., (κ − 1)ẑ∗η(ẑ∗)/g∗.

The first row reports the benchmark we have just discussed. The second row reduces κ to 2 so 
that productivity gain from a radical innovation is now five times that of incremental innovation 
((κ − 1)/(λ − 1) = 5). This changes the rate of innovation of entrants to once every 7 years, and 
leaves the incremental innovation rate unchanged. The contribution of entrants to productivity 
growth is slightly higher, 34%. The third row increases κ to 4. In this case, again the only number 
that changes significantly is the rate of innovation of entrants.

The fourth and fifth row reduces the size of innovations by incumbents to λ = 1.1, and the 
sixth row reduces the R&D productivity of the incumbent by half. In these cases the contribution 
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of entrants increase to more than two thirds. The remaining rows vary the values of β and α. 
When β is set to 1/2, the contribution of entrants does not change significantly. However, when 
α is set to 0.8, the contribution of entrants increases to above one half.

These results therefore show that, in contrast to basic Schumpeterian models, the contribution 
of incumbents to productivity growth is often quite substantial. Nevertheless, Table 1 also shows 
that the model can lead to quite different decompositions of productivity growth between incum-
bents and entrants, and a more careful empirical investigation of the fit of the model is necessary 
(though the parameters that would be required for this need to be estimated).

4.2. Simulations

We next examine the growth decomposition under the presence of imitative entrance, (25), 
as well as the stationary distribution of firm size. Starting from the baseline parameters in Sub-
section 4.1, we choose the cost of (imitative) entry based on knowledge spillovers to μe = 15. 
Table 2 shows how this decomposition, as well as the stationary firm size distribution change, 
as we vary ω. At ω = 0, we converge to the baseline economy without knowledge spillover as 
shown in Proposition 2. As we increase ω, the contribution of imitative entrants to aggregate 
growth increases and the tail index of the stationary distribution of firm size increases as well, 
i.e., the distribution has thinner tails as we increase ω.
Table 2

ω g % by incumbents % by radical entrants % by imitative entrants Tail index

0 2% 66.7% 33.3% 0% 1
0.1 2.02% 65.7% 32.7% 1.6% 1.05
0.3 2.07% 64.14% 31.23% 4.63% 1.17
0.5 2.11% 62.53% 29.97% 7.50% 1.26

Note. This table displays how the growth rate, the growth decomposition and the Pareto tail index change with the 
imitation technology, ω.

For the case ω = 0.1, Fig. 1 shows the distribution of firm size, i.e., log rank as a function of 
log size. The distribution is close to Zipf’s law with Pareto index of the tail around 1.05. Fig. 2
shows the rate of innovation of incumbents and entrants (normalized by the innovation size and 
the aggregate growth rate). The investment in R&D by incumbents is non-linear and exhibits 
the “escape competition effect” (Aghion et al. [6]). In particular, close to the threshold where 
imitative entry takes place, the incumbents invest more into incremental R&D.

5. Conclusion

A large fraction of US industry-level productivity growth is accounted for by existing firms 
and continuing establishments. Standard growth models either predict that most growth should 
be driven by new innovations brought about by entrants (and creative destruction) or do not pro-
vide a framework for decomposing the contribution of incumbents and entrants to productivity 
growth. In this paper, we proposed a simple modification of the basic Schumpeterian endogenous 
growth models that can address these questions. The main departure from the standard models is 
that incumbents have access to a technology for incremental innovations and can improve their 
existing machines (products). A different technology can then be used to generate more radical 
innovations. Arrow’s replacement effect implies that only entrants will undertake R&D for radi-
cal innovations, while incumbents will invest in incremental innovations. This general pattern is 
in line with qualitative and quantitative evidence on the nature of innovation.
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Fig. 1. Stationary distribution.

Fig. 2. Policy functions.

The model is not only consistent with the broad evidence but also provides a tractable frame-
work for the analysis of productivity growth and of the entry of new firms and the expansion of 
existing firms. It yields a simple equation that decomposes productivity growth between continu-
ing establishments and new entrants. Although the parameters to compute the exact contribution 
of different types of establishments to productivity growth have not yet been estimated, the use 
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of plausible parameter values suggests that, in contrast to basic endogenous technological change 
models and consistent with the US data, a large fraction—but not all—of productivity growth is 
accounted by continuing establishments.

The comparative static results of this model are also potentially different from those of existing 
growth models, because innovation by incumbents also responds to changes in parameters and 
policy. For example, despite the presence of entry and creative destruction, the model shows 
that entry barriers or taxes on potential entrants may increase the equilibrium growth rate of the 
economy. This is because, in addition to their direct negative effects, such taxes create a positive 
impact on productivity growth by making innovation by incumbents more profitable.

Finally, because the model features entry by new firms and expansion and exit of existing 
firms, it also generates an equilibrium firm size distribution. The resulting stationary distribution 
of firm sizes approximates the Pareto distribution with an exponent of one (the so-called “Zipf 
distribution”) observed in US data (e.g., Axtell [16]).

The model presented in this paper should be viewed as a first step in developing tractable 
models with endogenous productivity processes for incumbents and entrants (which take place 
via innovation and other productivity-increasing investments). It contributes to the literature on 
endogenous technological change by incorporating additional industrial organization elements in 
the study of economic growth. An important advantage of the approach developed here is that it 
generates predictions not only about the decomposition of productivity growth between incum-
bents and entrants, but also about the process of firm growth, entry and exit, and the equilibrium 
distribution of firm sizes. The resulting stochastic process for firm size is rather simple and does 
not incorporate rich firm dynamics that have been emphasized by other work, for example, by 
Klette and Kortum [41], who allow firms to operate multiple products, or by Hopenhayn [36], 
Melitz [51] and Luttmer [47], who introduce a nontrivial exit decision (due to the presence of 
fixed costs of operation) and also allow firms to learn about their productivity as they operate. 
Combining these rich aspects of firm entry and exit dynamics with innovation decisions that en-
dogenize the stochastic processes of productivity growth of incumbents and entrants appears to 
be an important area for future theoretical research. A more important line of research, would 
be a more detailed empirical analysis of the predictions of these various approaches using data 
on productivity growth, exit and entry of firms. The relatively simple structure of the model pre-
sented in this paper should facilitate these types of empirical exercises. For example, a version of 
the current model, enriched with additional heterogeneity in firm growth, can be estimated using 
firm-level data on innovation (patents), sales, entry and exit.
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Appendix A

Derivation of the Growth Equation. The growth of the average product quality Q(t) comes 
from three sources: innovation from the incumbent firms, from the innovative entrants and from 
the imitators. Recall that Q(t) ≡ ∫ 1

q(v, t)dv, where q(v, t) is the highest quality in sector v. 
0
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We suppose that the investment of the incumbents in each sector is z(̃q) and of the entrants is 
ẑ(̃q), where ̃q is the quality relative to the average quality that grows at the rate g from time t to 
t + 
t . Then we have

Q(t + 
t)

=
1∫

0

q(v, t + 
t)dv

=
1∫

0,q(v,t)≥εQ(t)(1+g
t)

(
φ(z(

q(v,t)
Q(t)

))
tλq(v, t) + ẑ(
q(v,t)
Q(t)

)η(̂z(
q(v,t)
Q(t)

))
tκq(v, t)

+ (1 − φ(z(
q(v,t)
Q(t)

))
t − ẑ(
q(v,t)
Q(t)

)η(̂z(
q(v,t)
Q(t)

))
t)q(v, t)

)
dv

+
1∫

0,εQ(t)<q(v,t)<εQ(t)(1+g
t)

(
φ(z(

q(v,t)
Q(t)

))
tλq(v, t) + ẑ(
q(v,t)
Q(t)

)η(̂z(
q(v,t)
Q(t)

))
tκq(v, t)

+ (1 − φ(z(
q(v,t)
Q(t)

))
t − ẑ(
q(v,t)
Q(t)

)η(̂z(
q(v,t)
Q(t)

))
t)ωQ(t)

)
dv.

Expanding the right hand side around 
t = 0, we have

Q(t + 
t) = λQ(t)
t

1∫
0

φ

(
z

(
q(v, t)

Q(t)

))
q(v, t)

Q(t)
dv

+ κQ(t)
t

1∫
0

ẑ

(
q(v, t)

Q(t)

)
η

(̂
z

(
q(v, t)

Q(t)

))
q(v, t)

Q(t)
dv

+
1∫

0,q(v,t)≥εQ(t)(1+g
t)

(
1 − φ

(
z

(
q(v, t)

Q(t)

))

t

− ẑ

(
q(v, t)

Q(t)

)
η

(̂
z

(
q(v, t)

Q(t)

))

t

)
q(v, t)dv

+
1∫

0,εQ(t)<q(v,t)<εQ(t)(1+g
t)

(
1 − φ

(
z

(
q(v, t)

Q(t)

))

t

− ẑ

(
q(v, t)

Q(t)

)
η

(̂
z

(
q(v, t)

Q(t)

))

t

)
ωQ(t)dv.

We can rearrange to decompose the growth of average quality into three different components: 
innovation from incumbents, from entrants, and from imitators:

Q(t + 
t)

= Q(t) + (λ − 1)Q(t)
t

1∫
0

φ

(
z

(
q(v, t)

Q(t)

))
q(v, t)

Q(t)
dv

︸ ︷︷ ︸

Innovation from Incumbents
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+ (κ − 1)Q(t)
t

1∫
0

ẑ

(
q(v, t)

Q(t)

)
η

(̂
z

(
q(v, t)

Q(t)

))
q(v, t)

Q(t)
dv

︸ ︷︷ ︸
Innovation from Entrants

+
1∫

0,εQ(t)<q(v,t)<εQ(t)(1+g
t)

(
1 − φ(z(

q(v,t)
Q(t)

))
t

− ẑ(
q(v,t)
Q(t)

)η(̂z(
q(v,t)
Q(t)

))
t

)(
ωQ(t) − q(v, t)

)
dv.

︸ ︷︷ ︸
Innovation from Imitators

We rewrite this growth accounting in term of stationary distribution with cumulative distribution 
function F(·) over ̂q = q

Q
> ε and probability density function f (·)

Q(t + 
t) = Q(t) + (λ − 1)Q(t)

∫
φ
(
z(̃q)

)
q̃dF (̃q)
t

+ (κ − 1)Q(t)

∫
ẑ(̃q)η

(̂
z(̃q)

)
q̃dF (̃q)
t

+ F
(
ε(1 + g
t)

)
(ω − ε)Q(t).

So

g = (λ − 1)EF

[
φ
(
z(̃q)

)
q̃
] + (κ − 1)EF

[̂
z(̃q)η

(̂
z(̃q)

)
q̃
] + εgf (ε)(ω − ε).

Equivalently

g = (λ − 1)EF [φ(z(̃q))̃q] + (κ − 1)EF [̂z(̃q)η(̂z(̃q))̃q]
1 − εf (ε)(ω − ε)

as in (32). When ω = 0 we have

g = (λ − 1)EF

[
φ
(
z(̃q)

)
q̃
] + (κ − 1)EF

[̂
z(̃q)η

(̂
z(̃q)

)
q̃
]
,

and when z(̃q) ≡ z∗ and ̂z(̃q) ≡ ẑ∗

g = (λ − 1)φ
(
z∗) + (κ − 1)̂z∗η

(̂
z∗)

as in (22), given that E[̃q] = 1. �
Proof of Proposition 2. In order to prove Proposition 2, let us first define Ii (̃v) ≡ maxz≥0 φ(z)̃v−
z and Ie(u) ≡ 1

κu
η−1( 1

κu
). Intuitively, Ii (̃v), for ̃v = (λ − 1)v, is the value (or proportional to the 

value) of incumbent firms from undertaking incremental innovation. Ie(u) is the rate of entry by 
entrants with radical innovations. There are one-to-one mappings from the investment technolo-
gies φ and η to the functions Ii and Ie. Using these notations we can also define vg as a solution 
of the equation

v = βL + Ii((λ − 1)v)

r + Ie(v)
, (33)

in which r = ρ + θg. The following lemma establishes some properties of vg around the equi-
librium values (v∗, g∗). We can easily see that vgq is the value function of an incumbent with 
product quality q , given the interest rate r , the entry behavior of entrants and without imitators, 
i.e., functional equation (19).
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Lemma 1. Suppose Assumption 2b is satisfied. There exists 
 > 0 such that for each g ∈
(g∗ − 
, g∗ + 
), there exists a unique vg ∈ (v∗ − 
, v∗ + 
) that satisfies Eq. (33). More-
over vg is strictly decreasing in g.

Proof. We rewrite Eq. (33) as Φ(v, g) = 0 where

Φ(v,g) = v
(
ρ + θg + Ie(v)

) − βL − Ii

(
(λ − 1)v

)
.

As we show below, ∂Φ(v∗, g∗)/∂v > 0, so the implicit function theorem guarantees the exis-
tence and uniqueness of (g, vg) in the neighborhood of (g∗, v∗), establishing the first part of the 
lemma. The second part follows immediately given that ∂Φ(v∗, g∗)/∂g = v∗θ > 0 and also by 
the implicit function theorem

dvg

dg
= −∂Φ(v∗, g∗)/∂g

∂Φ(v∗, g∗)/∂v
.

We use direct calculation to show ∂Φ(v∗, g∗)/∂v > 0. Indeed, we have

∂Φ(v∗, g∗)
∂v

= ρ + θg∗ + ∂(v∗Ie(v
∗))

∂v
− I ′

i

(
(λ − 1)v∗)(λ − 1).

First of all, by definition of Ie, v∗Ie(v
∗) = 1

κ
η−1( 1

κv
), strictly increasing in v, so ∂(v∗Ie(v

∗))
∂v

> 0. 
Second of all, applying the envelope theorem to Ii (̃v) implies I ′

i ((λ − 1)v) = φ(z(v)). From the 
definition of g∗ in (22) and Assumption 2b, we have

θg∗ ≥ g∗

> φ
(
z∗)(λ − 1)

= I ′
i

(
(λ − 1)v∗)(λ − 1).

These two inequalities ∂(v∗Ie(v
∗))

∂v
> 0 and θg∗ > I ′

i ((λ − 1)v∗)(λ − 1) imply

∂Φ(v∗, g∗)
∂v

> ρ > 0. �
We prove Proposition 2 in three steps sketched in the body of the paper:
Step 1: We state the existence of a value function V̂g(̃q) in the following lemma

Lemma 2 (Existence of value function). Suppose the BGP equilibrium in the baseline economy 
is described by Proposition 1, in particular with v∗, g∗ and r∗ as given by (21), (22) and (23), 
and Assumptions 2b and 3 are satisfied. Then there exist 0 < μ < μ and 
 > 0 such that for any 

μe ∈ (μ,μ), g ∈ [g∗, g∗ + 
] and ω > 0, we can find εg ≤ ω(1 − β)
1−β
β and a value function 

V̂g (̃q) that satisfies (27), (28) and (29).

Below, we show that these properties are satisfied by V̂g(̃q) = q̃Ug(ln(̃q) − ln εg), where Ug is 
shown to exist using Schauder’s fixed point theorem. The following lemma shows the existence 
of Ug .

Lemma 3. Suppose Assumptions 2b and 3 are satisfied. Let 
 ∈ (0, g∗) small enough to apply 
Lemma 1. Then for each g ∈ [g∗ − 
, g∗ + 
], there is a solution Ug ≥ 0 to the functional 
equation
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rU(p) + gU ′(p)

= βL + max
z≥0

{
φ(z)

(
λU(p + lnλ) − U(p)

) − z
} − ẑ(p)η

(̂
z(p)

)
U(p), (34)

where r = ρ + θg, η(̂z(p))κU(p + lnκ) = 1, and U satisfies the boundary conditions

U(0) = 0 and lim
p→∞U(p) = vg, (35)

where vg is defined in Lemma 1. Moreover, Ug is equicontinuous in g over any finite interval.

Notice that the conditions (27) and (29) on V̂g translate into the conditions (34) and the first 
part of (35) on U . In order to apply Schauder’s fixed point theorem, we need to find a subset � of 
continuous functions U : [g∗ −
, g∗ +
] ×R+ →R that satisfy the boundary conditions (35), 
and a continuous mapping T that summarizes the functional equation (34). We need T (�) to be 
a compact subset of �. � and T are constructed in Definitions 5 and 6. Lemmas 4 and 5 show 
that T (�) is a compact subset of �. Lemma 6 shows that the mapping T is continuous. Together 
with the Schauder’s fixed point theorem, these properties ensure the existence of U .

Definition 4. C0([g∗ − 
, g∗ + 
] ×R+, R) denotes the Banach space of continuous functions 
U : [g∗ − 
, g∗ + 
] ×R+ →R and U(g, 0) = 0 for all g ∈ [g∗ − 
, g∗ + 
] with the norm

‖U‖ = sup
g∗−
≤g≤g∗+


sup
0≤p≤∞

∣∣U(g,p)
∣∣.

Definition 5. Let � denote the subset of continuous functions U ∈ C0([g∗−
, g∗+
] ×R+, R)

with U(g, 0) = 0 and

vg − vge
−θp ≤ U(g,p) ≤ vg + vge

−θp for all p ≥ 0. (36)

Definition 6. For each function u = U(g, .) ∈ C0(R+, R) consider the operator Tg

Tgu ∈ C0(
R

+,R
)

satisfying the following ordinary differential equation36

g(Tgu)′(p) + (
rg + Ie

(
u(p + lnκ)

))
(Tgu)(p)

= βL + Ii

(
λu(p + lnλ) − Tgu(p)

)
, (37)

with the initial condition Tgu(0) = 0. Notice that

rg = ρ + θg. (38)

Here ̂z(p) is defined such that η(̂z(p))κu(p + lnκ) = 1. The operator T is defined by

T U(g,p) = TgU(g,p).

Lemma 4. Suppose Assumptions 2b and 3 are satisfied, then T (�) ⊂ �.

36 Standard results from the theory of ordinary differential equations ensure the existence and uniqueness of Tgu(p) if 
u ∈ � defined below.
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Proof. Let kg(p) = vg + vge
−θp and kg(p) = vg − vge

−θp . By definition, for each U ∈ �, we 
have

kg(p) ≤ U(g,p) ≤ kg(p).

Let kg(p) = TgU(g, p) then, also by definition (37) implies that

gk′
g(p) = βL − Ii

(
λu(p + lnλ) − kg(p)

) − (
rg + Ie

(
u(p + lnκ)

))
kg(p)

≤ βL − Ii

(
λkg(p + lnλ) − kg(p)

) − (
rg + Ie

(
kg(p + lnκ)

))
kg(p).

So if

gk′
g(p) > βL − Ii

(
λkg(p + lnλ) − kg(p)

) − (
rg + Ie

(
kg(p + lnκ)

))
kg(p), (39)

then kg(p) < kg(p) for all p > 0 given that kg(0) = 0 < kg(0). Similarly, if

gk′
g(p) < βL − Ii

(
λkg(p + lnλ) − kg(p)

) − (
rg + Ie

(
kg(p + lnκ)

))
kg(p) (40)

then kg(p) > kg(p) for all p > 0 given that kg(0) = 0 = kg(0).
Below we will use Assumption 3 to show (39) and (40). Indeed, the two inequalities can be 

re-written as (for all 0 < x ≤ vg):

−gθx > βL + Ii

(
(λ − 1)vg + (

λ1−θ − 1
)
x
) − (

rg + Ie

(
vg − κ−θ x

))
(vg + x), (41)

and

gθx < βL + Ii

(
(λ − 1)vg − (

λ1−θ − 1
)
x
) − (

rg + Ie

(
vg + κ−θ x

))
(vg − x). (42)

By definition of vg in Lemma 1, we have equalities at x = 0. It is sufficient to show that the 
derivative of the left hand side of (41) is strictly greater than the derivative of its right hand side. 
Or equivalently,

−gθ > I ′
i

(
(λ − 1)vg + (

λ1−θ − 1
)
x
)(

λ1−θ − 1
) − rg − Ie

(
vg − κ−θ x

)
+ I ′

e

(
vg − κ−θ x

)
κ−θ vg.

Eq. (38) now implies that rg > gθ and, from Assumption 2b, θ ≥ 1, yields

I ′
i

(
(λ − 1)vg + (

λ1−θ − 1
)
x
)(

λ1−θ − 1
) ≤ 0.

It remains to show that

Ie

(
vg − κ−θ x

)
vg ≥ I ′

e

(
vg − κ−θ x

)
κ−θ ,

or (
vg − κ−θ x

) ≥ 1

min εIe

κ−θ vg,

or

min εIe

min εIe + 1
≥ κ−θ . (43)

Similarly, it is sufficient to show that the derivative of the left hand side of (42) is strictly greater 
than the derivative of its right hand side. Or equivalently,

gθ < I ′
i

(
(λ − 1)vg − (

λ1−θ − 1
)
x
)(

1 − λ1−θ
) + rg + Ie

(
vg + κ−θ x

)
− I ′(vg + κ−θ x

)
κ−θ vg.
e
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This is true if (vg + κ−θ x) ≥ 1
min εIe

κ−θ vg , or equivalently, if

min εIe ≥ κ−θ . (44)

Since

εIe = 1

εη

− 1,

Assumption 3 implies both (43) and (44). �
Lemma 5. T (�) is a compact subset of C0([g∗ − 
, g∗ + 
] ×R+, R).

Proof. Suppose {fn}∞n=1 ⊂ �, we will show that we can extract a subsequence from {Tfn}∞n=1
that converges to f ∗ ∈ �. First, there exists a constant K > 0 such that ‖U‖ ≤ K for all U ∈ �. 
So (for all g and p):∣∣∣∣ ∂

∂p
Tfn

∣∣∣∣ =
∣∣∣∣ d

dp
Tgfn(g,p)

∣∣∣∣ ≤ βL + Ii((λ + 1)K) + (ρ + θ(g∗ + 
) + Ie(K))K

g∗ − 

.

Second, Dg(p) = ∂
∂g

(Tfn(p)) is the solution of

gD′
g(p) + Tfn(p) +

(
drg

dg
+ Ie

(
fn(p + lnκ)

))
Tfn(p)

= (
I ′
i

(
λfn(p + lnλ) − Tfn(p)

) − (
rg + Ie

(
fn(p + lnκ)

)))
Dg(p).

So Dg(p) is uniformly bounded over [g∗ − 
, g∗ + 
] × [0, M] for any M > 0. Therefore, for 
each M = 1, 2, . . . , we have {Tfn(g, p)}∞n=1 is equicontinuous over

C0([g∗ − 
,g∗ + 

] × [0,M],R)

.

We construct subsequences ({TfMk
}k≥1)M≥1 of {Tfn}n≥1 as follows:

• M = 1: Since {Tfn}n≥1 is equicontinuous over [g∗ − 
, g∗ + 
] × [0, M], there exists a 
subsequence {Tf1k

}∞k=1 that converges uniformly to f ∗
M ∈ C0([g∗ −
, g∗ +
] ×[0, M], R)

over [g∗ − 
, g∗ + 
] × [0, M].
• M �⇒ M + 1: Since {TfMk

}∞k=1 is equicontinuous over [g∗ − 
, g∗ + 
] × [0, M + 1], 
there exists a subsequence {Tf(M+1)k }∞k=1 that converges uniformly to f ∗

M+1 over [g∗ − 
,

g∗ +
] ×[0, M +1]. Because of the subsequence property: f ∗
M+1|[g∗−
,g∗+
]×[0,M] = f ∗

M .

Let f ∗ : [g∗ − 
, g∗ + 
] × R+ → R be defined by f ∗|[g∗−
,g∗+
]×[0,M] = f ∗
M for 

all M ∈ Z+. By definition of f ∗ we have for each p ≥ 0 and g ∈ [g∗ − 
, g∗ + 
], 
limM→∞ TfMM

(g, p) = f ∗(g, p) so f ∗ ∈ �.
We now show that the subsequence {TfMM

}∞M=1 converges to f ∗, i.e.,

lim
M→∞

∥∥TfMM
− f ∗∥∥

C0([g∗−
,g∗+
]×R+,R)
= 0.

Indeed, for any ε > 0, given (36) in the definition of �, there exists a p1 > 0 such that 
|TfMM

(g, p) − vg| < ε
2 and |f ∗(g, p) − vg| < ε

2 for all p ≥ p1. So for all p ≥ p1 and g ∈
[g∗ −
, g∗ +
], we have |TfMM

(g, p) −f ∗(g, p)| < ε. Given p1, there exists an M1 such that 
|TfMM

(g, p) −f ∗(g, p)| < ε for all p1 ≥ p ≥ 0, g ∈ [g∗ −
, g∗ +
] and M ≥ M1. Therefore, 
for all p ≥ 0, g ∈ [g∗ − 
, g∗ + 
] and M ≥ M1, we have |TfMM

(g, p) − f ∗(g, p)| < ε. �
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Lemma 6. The mapping T is continuous over �.

Proof. Suppose fn → f , by the Lebesgue dominated convergence theorem, we have Tfn con-
verges pointwise toward Tf . We next prove that

lim
n→∞‖Tfn − Tf ‖C0([g∗−
,g∗+
]×R+,R) = 0.

First, notice that {Tfn} is a Cauchy sequence: Because, for any ε > 0 {Tfn} it is a Cauchy 
sequence over any restricted interval [0, p1] so we can find M such that

‖Tfm − Tfn‖C0([g∗−
,g∗+
]×[0,p1],R) < ε for all m,n ≥ M

and by definition of � we can choose p1 such that∥∥Tfm(p,g) − Tfn(p,g)
∥∥ <

∥∥Tfm(p,g) − vg

∥∥ + ∥∥Tfn(p,g) − vg

∥∥
<

ε

2
+ ε

2
= ε for all p ≥ p1.

Second, by the relative compactness of T (�), from any subsequence of {Tfn} there is subse-
quence {hM} of {Tfn} that converges to h over C0([g∗ − 
, g∗ + 
] ×R+, R). Since {hM} also 
converges pointwise to Tf we have h = Tf . Therefore

lim
M→∞‖hM − Tf ‖C0([g∗−
,g∗+
]×R+,R) = 0.

Thus

lim
n→∞‖Tfn − Tf ‖C0([g∗−
,g∗+
]×R+,R) = 0. �

Proof of Lemma 3. Given Lemmas 4, 5, 6 we can apply the Schauder’s fixed point theorem to 
show that T admits a fixed point U in �: T U = U . Or equivalently for each g ∈ [g∗−
, g∗+
], 
u(·) = U(g, .) satisfies u(0) = 0 and (34). The limit at infinity in (35) follows directly from the 
definition of �. Finally, equicontinuity is a consequence of the fact that U(·) ∈ C0([g∗ − 
,

g∗ + 
] ×R+, R). �
Now, we find εg such that the value function V̂g(̃q) = q̃Ug(ln(̃q) − ln εg) satisfies (27), (28)

and (29).

Proof of Lemma 2. Let us choose μ < μ such that

μ > Ug∗
(

1 − β

β
log

(
1

1 − β

))
and

μ < Ug∗
(

1 − β

β
log

(
1

1 − β

)
+ δ

)
,

where δ > 0. Given that U(g, p) is equicontinuous in g ∈ [g∗, g∗ + 
], we can choose 
 suf-
ficiently small such that we can apply Lemma 3 and moreover Ug(

1−β
β

log( 1
1−β

)) < μ < μ <

Ug(
1−β
β

log( 1
1−β

) + δ) for all g ∈ [g∗, g∗ + 
]. Therefore, for any μe ∈ (μ,μ) there exists an 

ωg ∈ (
1−β log( 1 ), 1−β log( 1 ) + δ) such that μe = Ug(ωg). For each ω, let

β 1−β β 1−β
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εg = ω/ exp(ωg) < ω(1 − β)
1−β
β (45)

and let V̂g(̃q) = q̃Ug(ln(̃q) − ln εg). Then V̂g satisfies (27), (28) and (29). �
Given the existence of U(g, p), for each g ∈ [g∗, g∗ + 
], we define

zg(p) = arg max
z≥0

(
λUg(p + λ) − Ug(p)

)
φ(z) − z

and

ẑg(p) = η−1
(

Ug(p + lnκ)

κ

)
.

Since limp→∞ Ug(p) = vg , we have

lim
p→∞ zg(p) = z(vg) and lim

p→∞ ẑg(p) = ẑ(vg).

Armed with the existence of the value function and the corresponding investment decisions, we 
are ready to prove the second step

Step 2: In Lemma 7, we show the existence of the stationary distribution under the form 
F ′

g(̃q) = fg(̃q) = hg(ln q̃−ln εg)

q̃
. Moreover, in Lemma 10, we show that fg satisfies the asymp-

totic Pareto property in Proposition 4. And lastly, for the purpose of the last step in proving the 
existence of a stationary BGP, in Lemma 12 we show that the mean firm size goes to infinity as 
g approaches g∗, i.e., limg↓g∗

∫ ∞
0 q̃dFg(̃q) = ∞.

We look for a stationary distribution Fg(y) that solves Eqs. (30) and (31) with z(̃q) =
zg(ln q̃ − ln εg) and ̂z(̃q) = ẑg(ln q̃ − ln εg). Let hg(p) = εge

pF ′
g(εge

p), Eqs. (30) and (31) be-
come:

If p > lnωg

0 = hg(p)g −
p∫

p−ln λ

φ
(
zg(p̃)

)
hg(p̃)dp̃ −

p∫
p−ln κ

ẑg(p̃)η
(̂
zg(p̃)

)
hg(p̃)dp̃. (46)

If p ≤ lnωg

0 = hg(p)g − hg(0)g −
p∫

p−ln λ

φ
(
zg(p̃)

)
hg(p̃)dp̃ −

p∫
p−ln κ

ẑg(p̃)η
(̂
zg(p̃)

)
hg(p̃)dp̃. (47)

We also have hg(p) = 0 for all p ≤ 0. The conditions for Fg to be a well-defined distribution is∫
hg(p)dp = 1.

The following lemma shows the existence and uniqueness of the stationary distribution.

Lemma 7. Given the investment strategies zg(p), ̂zg(p), the stationary distribution hg(p) exists 
and is unique.
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Proof. Differentiating both side of the integral equations on hg, we have

gh′
g(p) = φ

(
zg(p)

)
hg(p) − φ

(
zg(p − lnλ)

)
hg(p − lnλ)

+ ẑg(p)η
(̂
zg(p)

)
hg(p) − ẑg(p − lnκ)η

(̂
zg(p − lnκ)

)
hg(p − lnκ).

We rewrite this equation as

gh′
g(p) − (

φ
(
zg(p)

) + ẑg(p)η
(̂
zg(p)

))
hg(p)

= −φ
(
zg(p − lnλ)

)
hg(p − lnλ)

− ẑg(p − lnκ)η
(̂
zg(p − lnκ)

)
hg(p − lnκ).

Using the variation of constant formula, this equation yields a unique equation for 0 ≤ p < ωg

given hg(0). For p ≥ ωg the equation also yields a unique solution, however the initial condition 
is now

hg(ωg) = 1

g

ωg∫
ωg−ln λ

φ
(
zg(p̃)

)
hg(p̃)dp̃ + 1

g

ωg∫
ωg−ln κ

ẑg(p̃)η
(̂
zg(p̃)

)
hg(p̃)dp̃.

Since the system is linear in the initial condition hg(0), therefore, there exists a unique hg(0)

such that 
∫ ∞

0 hg(p)dp = 1. Notice that Lemma 10 below implies that 
∫ ∞

0 hg(p)dp < ∞. �
Having established the existence and uniqueness of the stationary distribution hg, we now 

characterize some of its properties. In particular, Lemma 3 suggests that the investment policies 
zg(p), ̂zg(p) are approximately constant as p goes to infinity. So the evolution of firm (sector) 
size assembles Gibrat’s law for large firms. As a result, the stationary distribution hg should have 
a tail distribution close to Pareto. The following lemmas prove that conjecture.

Let z∗
g = z(vg) and ̂z∗

g = ẑg(vg). Then for each g > g∗, define the χ(g) as the unique number 
χ satisfying

g = φ
(
z∗
g

)λχ − 1

χ
+ ẑ∗

g∗η
(̂
z∗
g

)κχ − 1

χ
,

because the right hand side is strictly increasing in χ . We will show below that χ(g) is the Pareto 
index of the Pareto tail of the stationary distribution hg.

Lemma 8. χ(g∗) = 1 and χ(g) > 1 for all g > g∗ and in the neighborhood of g∗.

Proof. By definition of g∗ we have g∗ = φ(z∗
g∗)(λ − 1) + ẑ∗η(̂z∗

g∗)(κ − 1), therefore χ(g∗) = 1. 
For g > g∗

g > φ
(
z∗
g

)
(λ − 1) + ẑ∗

gη
(̂
z∗
g

)
(κ − 1).

Thus χ(g) > 1. To show the previous inequality, notice that the left hand side is strictly in-
creasing in g and the right hand side is strictly increasing in vg . However, Lemma 1 shows that 
vg is strictly decreasing in g, so the right hand side is strictly decreasing in g. Combining this 
fact with the fact that at g = g∗ the two sides are equal, we obtain the desired inequality. �
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Lemma 9. For each ξ > 0, there exists a δ > 0 such that(
1

g
φ
(
z∗
g

) + δ

)
λχ−ξ − 1

χ − ξ
+

(
1

g
ẑ∗
gη

(̂
z∗
g

) + δ

)
κχ−ξ − 1

χ − ξ
< 1

and (
1

g
φ
(
z∗
g

) − δ

)
λχ+ξ − 1

χ + ξ
+

(
1

g
ẑ∗
gη

(̂
z∗
g

) − δ

)
κχ+ξ − 1

χ + ξ
> 1.

Proof. This is true given 1
g
φ(z∗

g)
λχ−1

χ
+ 1

g
ẑ∗
gη(̂z∗

g)
κχ−1

χ
= 1 and the functions

λχ−ξ − 1

χ − ξ
,

κχ−ξ − 1

χ − ξ

are strictly increasing in χ − ξ . �
For each ξ > 0 let δ > 0 be such a δ. Given the limit result in Lemma 3, there exists a p0 =

p0(δ) ≥ ωg such that, for all p ≥ p0∣∣∣∣( 1

g
φ
(
zg(p)

) + 1

g
ẑg(p)η

(̂
zg(p)

)) −
(

1

g
φ
(
z∗
g

) + 1

g
ẑ∗
gη

(̂
z∗
g

))∣∣∣∣ < δ

and ∣∣∣∣ 1

g
φ
(
zg(p − lnλ)

) − 1

g
φ
(
z∗
g

)∣∣∣∣ < δ∣∣∣∣ 1

g
ẑg(p − lnκ)η

(̂
zg(p − lnκ)

) − 1

g
ẑ∗
gη

(̂
z∗
g

)∣∣∣∣ < δ.

We will now state and prove a key lemma. Proposition 4 then follows as a corollary of this 
lemma.

Lemma 10 (Tail index). For any ξ > 0, there exist B, B and p0 such that

hg(p) < 2Be−(χ(g)−ξ)p, for all p ≥ p0

and

hg(p) >
1

2
Be−(χ(g)+ξ)p, for all p ≥ p0.

In other words, hg(p) = e−χ(g)pϕg(p), where ϕg(p) is a slow-varying function.

Proof. Let us define B(δ) ≡ maxp0≤p≤p0+ln κ hg(p)e(χ−ξ)p and B(δ) ≡
minp0≤p≤p0+ln κ hg(p)e(χ+ξ)p . We will show that

hg(p) < 2B(δ)e−(χ−ξ)p, for all p ≥ p0

and

hg(p) >
1
B(δ)e−(χ+ξ)p, for all p ≥ p0.
2
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These inequalities hold for p0 ≤ p ≤ p0 + lnκ by definition. We will next show that they also 
hold for all p ≥ p0. To obtain a contradiction, suppose that there is p > p0 + lnκ such that 
hg(p) ≥ 2B(δ)e−(χ−ξ)p . Consider the infimum of those p, then

hg(p) = 2B(δ)e−(χ−ξ)p.

In the other hand, the equation determining hg implies

hg(p) = 1

g

p∫
p−ln λ

φ
(
zg(p̃)

)
hg(p̃)dp̃ + 1

g

p∫
p−ln κ

ẑg(p̃)η
(̂
zg(p̃)

)
hg(p̃)dp̃

<

p∫
p−ln λ

(
1

g
φ
(
z∗
g

) + δ

)
2B(δ)e−(χ−ξ)p̃dp̃

+
p∫

p−ln κ

(
1

g
ẑ∗
gη

(̂
z∗
g

) + δ

)
2B(δ)e−(χ−ξ)p̃dp̃

= 2B(δ)

(
1

g
φ
(
z∗
g

) + δ

)
λχ−ξ − 1

χ − ξ
e−(χ−ξ)p

+ 2B(δ)

(
1

g
ẑ∗
gη

(̂
z∗
g

) + δ

)
κχ−ξ − 1

χ − ξ
e−(χ−ξ)p

< 2B(δ)e−(χ−ξ)p.

This yields a contradiction. Therefore

hg(p) < 2B(δ)e−(χ−ξ)p, for all p ≥ p0.

Similarly, we can show that

hg(p) >
1

2
B(δ)e−(χ+ξ)p, for all p ≥ p0. �

As a consequence, if g > g∗, then χ(g) > 1, Lemma 10 for ξ = χ(g)−1
2 implies∫

hg(p)dp < C

∫
e− 1+χ(g)

2 pdp < ∞.

In order to proceed to Step 3, we need to show that the mean of firm size converges to infinity 
as g approaches g∗ from above, i.e., limg−→g∗

∫ ∞
0 hg(p)epdp = ∞. This is intuitively true using 

Lemma 4, because hg∗(p) ∝ e−p so 
∫ ∞

0 hg∗(p)epdp ∝ ∫ ∞
0 1dp = ∞. Unfortunately, this does 

not work formally because Lemma 4 only provides e−(1−ξ)p as a lower bound. So, the following 
lemma gives a better lower bound of hg∗ in order to prove the limiting result.

Lemma 11 (Tail index at the limit). There exists B and p0 such that

hg∗(p) >
1

2
B

e−p

p
, for all p ≥ p0.

Proof. Let us choose B > 0 such that the inequality holds for p0 ≤ p ≤ p0 + lnκ . We will show 
that they also hold for all p ≥ p0 using contradiction.
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First, we choose p0 such that, using Lemma 4 there exists a constant C > 0 that satisfies

φ
(
zg∗(p̃)

)
> φ

(
z∗
g∗

) − g∗Ce−θp̃

ẑg∗(p̃)η
(̂
zg∗(p̃)

)
> ẑ∗

g∗η
(̂
z∗
g∗

) − g∗Ce−θp̃

∀p̃ ≥ p0.

Suppose that there is p > p0 + lnκ such that

hg∗(p) <
1

2
B

e−p

p
.

Consider the infimum of those p, then

hg∗(p) = 1

2
B

e−p

p
.

On the other hand, the equation determining hg∗ implies

hg∗(p) = 1

g∗

p∫
p−ln λ

φ
(
zg∗(p̃)

)
hg∗(p̃)dp̃ + 1

g∗

p∫
p−ln κ

ẑg∗(p̃)η
(̂
zg∗(p̃)

)
hg∗(p̃)dp̃

>

p∫
p−ln λ

(
1

g∗ φ
(
z∗
g∗

) − Ce−θp̃

)
1

2
B

e−p̃

p̃
dp̃

+
p∫

p−ln κ

(
1

g∗ ẑ∗
g∗η

(̂
z∗
g∗

) − Ce−θp̃

)
1

2
B

e−p̃

p̃
dp̃

= 1

2
B

1

g∗ φ
(
z∗
g∗

)
(λ − 1)

e−p

p
+ 1

2
B

1

g∗ ẑ∗
g∗η

(̂
z∗
g∗

)
(κ − 1)

e−p

p

+ 1

2
BC′ e−p

p2
− 1

2
BC′′e−(1+ θ

2 )p

>
1

2
B

e−p

p
.

(We also choose p0 such that C′ e−p

p2 − 1
2C′′e−(1+ θ

2 )p > 0 for all p ≥ p0). This yields a contrac-
tion. Therefore

hg∗(p) >
1

2
B

e−p

p
, ∀ p ≥ p0. �

So, a direct consequence of this lemma is
∞∫

0

hg∗(p)epdp >

∞∫
p0

1

2
B

1

p
dp = ∞.

We can use the results above to prove the following property of hg, which will be crucial to 
show the existence of the equilibrium growth rate of the economy with imitation, i.e., the last 
step in proving Proposition 2.
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Lemma 12. hg is uniformly continuous in g. And for g > g∗

Φ(g) =
∞∫

0

hg(p)epdp < ∞

is continuous in g. Moreover limg↓g∗ Φ(g) = +∞.

Proof. The fact that hg is uniformly continuous in g is a result of uniform continuity of {Ug}, 
thus of zg(·) and ̂zg(·) as well. Φ(g) is finite given Proposition 4. Φ(g) is continuous by the 
Lebesgue dominated convergence theorem. Finally, as we show above Φ(g∗) = +∞ and by the 
uniform continuity of hg , we have limg↓g∗ Φ(g) = +∞. �

For any ω > 0, εg is defined as in (45). The corresponding stationary distribution is fg(̃q) =
hg(ln q̃−ln εg)

q̃
and policy functions are z(̃q) = zg(ln q̃ − ln εg) and ẑ(̃q) = ẑg(ln q̃ − ln εg) for 

all q̃ ≥ εg . Given g, g′ as defined in (32) can be written using hg and the change of variable 
q̃ = εge

p:

g′ =
(λ − 1)

∫ ∞
εg

q̃φ(z(̃q))fg(̃q)dq̃ + (κ − 1)
∫ ∞
εg

q̃ẑ(̃q)η(̂z(̃q))fg(̃q)dq̃

1 − εgfg(εg)(ω − εg)

= εg

(λ − 1)
∫ ∞

0 epφ(zg(p))hg(p)dp + (κ − 1)
∫ ∞

0 epẑg(p)η(̂zg(p))hg(p)dp

1 − hg(0)(ω − εg)
.

We obtain an BGP if g′ = g.
Step 3: We next show that there exists g(ω) such that

D
(
g(ω)

) ≡ g′(g(ω)
) − g(ω) = 0.

Let μ, μ and 
 be chosen as in Lemma 2 and such that Lemma 8 for g ∈ [g∗, g∗ + 
]. 
Consider ω > 0 sufficiently small such that for all 0 < ω < ω, ε = ω

ωg∗+

satisfies

ε
(λ − 1)

∫ ∞
0 epφ(zg∗+
(p))hg∗+
(p)dp + (κ − 1)

∫ ∞
0 epẑg∗+
(p)η(̂zg∗+
(p))hg∗+
(p)dp

1 − hg∗+
(0)(ω − ε)

< g∗ + 
. (48)

We will show that, for each ω such that 0 < ω < ω, there exists a g = g(ω) ∈ (g∗, g∗ + 
) such 
that g′ = g and that

lim
ω→0

g(ω) = g∗.

Indeed, as in the proof of Lemma 2 there exists an ωg such that ωg ∈ (
1−β
β

log( 1
1−β

),

1−β
β

log( 1
1−β

) + δ) and Ug(ωg) = μe. Set εg = ω/ exp(ωg) and define

D(g) = εg

(λ − 1)
∫ ∞

0 epφ(zg(p))hg(p)dp + (κ − 1)
∫ ∞

0 epẑg(p)η(̂zg(p))hg(p)dp

1 − hg(0)(ω − εg)
− g.

Using Lemma 12, we can show that D(g) is continuous in g. Moreover, by (48), we have

D
(
g∗ + 


)
< 0,
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and, Lemma 12 implies

lim
g→g∗ D(g) = +∞.

Therefore, by the intermediate value theorem, there exists a g(ω) such that D(g) = 0. Moreover 
if g(ω) > g∗ + � as ω → 0, we also have

εg

(λ − 1)
∫ ∞

0 epφ(zg(p))hg(p)dp + (κ − 1)
∫ ∞

0 epẑg(p)η(̂zg(p))hg(p)dp

1 − hg(0)(ω − εg)
→ 0

(because εg → 0). This implies D(g(ω)) < −(g∗ + �) < 0, yielding a contradiction with the 
fact that D(g(ω)) = 0. Thus

lim
ω→0

g(ω) = g∗.

The uniform convergences of the value and policy functions are obtained immediately given 
the bounds on the value function in (36), which themselves converge uniformly. �
Appendix B. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/
j.jet.2015.01.001.
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