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Abstract— Most large-scale communication networks, such as
the Internet, consist of interconnected administrative domains.
While source (or selfish) routing, where transmission follows the
least cost path for each source, is reasonable across domains, ser-
vice providers typically engage in traffic engineering to improve
operating performance within their own network. Motivated by
this observation, we develop and analyze a model of partially
optimal routing, where optimal routing within subnetworks is
overlaid with selfish routing across domains. We demonstrate
that optimal routing within a subnetwork does not necessarily
improve the performance of the overall network. In particular,
when Braess’ paradox occurs in the network, partially optimal
routing may lead to worse overall network performance. We
provide bounds on the worst-case loss of efficiency that can
occur due to partially optimal routing. For example, when all
congestion costs can be represented by affine latency functions
and all administrative domains have a single entry and exit
point, the worst-case loss of efficiency is no worse than 25%
relative to the optimal solution. In the presence of administrative
domains incorporating multiple entry and/or exit points, however,
the performance of partially optimal routing can be arbitrarily
inefficient even with linear latencies. We also provide conditions
for traffic engineering to be individually optimal for service
providers.

Index Terms— Traffic engineering, selfish routing, Wardrop
equilibrium, Braess’ paradox.

I. INTRODUCTION

S INCE the passage of the Telecommunications Act in 1996,
the Internet has undergone a dramatic transformation and

experienced increasing decentralization. Today, thousands of
network providers cooperate and compete to provide end-to-
end network service to billions of users worldwide. While end-
users care about the performance across the entire network, in-
dividual network providers optimize their own objectives. The
Internet’s architecture provides no guarantees that provider
incentives will be aligned with end-user objectives.

The emergence of overlay routing over the past five years
has further highlighted the potentially conflicting objectives
of the service provider and the end-users. In overlay routing,
end-user software (such as peer-to-peer file-sharing software)
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makes route selection decisions on the basis of the best end-to-
end performance available at any given time, while adminis-
trative domains control the routing of traffic within their own
(sub)networks. Network operators use traffic engineering to
optimize performance, and also to react to the global routing
decisions of overlay networks (e.g., [2]).

These considerations make it clear that the study of routing
patterns and performance in large-scale communication net-
works requires an analysis of partially optimal routing, where
end-to-end route selection is selfish and responds to aggregate
route latency, but network providers redirect traffic within their
own networks to achieve minimum intradomain total latency.

We develop and analyze a model of partially optimal
routing, combining selfish across-domain routing and traffic
engineering by service providers within their administrative
domains. While recent research (e.g., [3]–[7]) has studied
the interactions of overlay routing and traffic engineering,
it has neither provided a formal model of partially optimal
routing nor theoretically addressed the central question of
whether partially optimal routing improves overall network
performance.

We consider routing flows between multiple source-
destination pairs through a network. Each link is endowed with
a latency function describing the congestion level (e.g., delay
or probability of packet loss) as a function of the total flow
passing through the link (e.g., [8]). Each source-destination
pair in the network has a fixed amount of flow, and flows
follow the minimum delay route among the available paths
as captured by the familiar notion of Wardrop equilibrium
(e.g., [8]). Our innovation is to allow subsets of the links in
the network (“subnetworks”) to be independently owned and
operated by different providers, and consider the possibility
that these providers engage in traffic engineering and route
traffic to minimize the total (or average) latency within their
subnetworks. Source-destination pairs sending traffic across
subnetworks perceive only the effective latency resulting from
the traffic engineering of the service providers. The result-
ing equilibrium, which we call a partially optimal routing
(POR) equilibrium, is a Wardrop equilibrium according to the
effective latencies seen by the source-destination pairs. This
model provides a stylized description of the practice of traffic
engineering in the Internet.

Because of the congestion externalities created by selfish
routing, the Wardrop equilibrium without traffic engineering
within subnetworks is typically inefficient and leads to a level
of total delay in excess of the system optimum (see, for
example, [9]–[11]). It may therefore be conjectured that the
addition of traffic engineering within parts of the network will
improve performance. Our first set of results show that this
is not necessarily the case. In particular, when the Braess’
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paradox occurs within the global network, partially optimal
routing may be less efficient than the Wardrop equilibrium.1

Motivated by this finding, we study the extent of inef-
ficiency of partially optimal routing relative to the system
optimum. For the case in which all independently-operated
subnetworks have unique entry and exit points, and latency
functions belong to certain subclasses, we provide tight bounds
for the inefficiency of partially optimal routing that exactly
match the corresponding bounds for the performance of
Wardrop equilibria. For example, with affine latency functions,
the worst-case performance of partially optimal routing is no
worse than 25% relative to the system optimum, matching the
same bound provided for Wardrop equilibrium by Roughgar-
den and Tardos [10]. Similarly, we provide bounds for the
cases in which latency functions are nonnegative polynomials
of bounded degree.

Interestingly, however, in the case of subnetworks with
multiple entry and exit points, the performance of partially
optimal routing can be arbitrarily inefficient even with linear
latency functions. This contrasts with the tight bound of 25%
efficiency loss for Wardrop equilibria with linear or affine
latency functions (see [10], [11]). In this general case, we can
only provide bounds for some special classes of subnetworks
with multiple entry and exit points.

We conclude by investigating subnetwork performance mea-
sured in terms of total delay (latency) under partially optimal
routing. We show that, in the absence of prices per unit of
transmission, a service provider may prefer not to engage in
traffic engineering in order to reduce total flow and delay
in their subnetwork. In addition, we provide conditions for
service providers to prefer traffic engineering to selfish routing
within their domain.

The remainder of the paper is organized as follows. Sec-
tion II introduces the three basic routing paradigms: socially
optimal routing, where total (or average) latency is minimized
across the entire network; selfish routing, where end-to-end
route selection is made based on minimum route latency; and
partially optimal routing, where end-to-end route selection
is still dependent on aggregate route latency, but providers
engage in traffic engineering within their subnetworks to
achieve minimum intradomain total latency.

Section III analyzes the performance of partially optimal
routing. We show that there may exist situations where opti-
mization within a subnetwork leads to lower global network
performance. We prove that this can only be the case when the
Braess’ paradox occurs within the global network. Section IV
then analyzes the worst-case efficiency loss that can occur at
the partially optimal routing solution and establishes bounds
on efficiency loss when all latency functions are affine, and
when all latency functions are nonnegative polynomials of
bounded degree. In the special case where all latency functions
are affine, we find that the ratio of partially optimal routing
cost to the social optimum is no worse than 4/3.

In Section V, we consider the case where subnetworks may
have multiple entry and exit points, and show how partially
optimal routing leads to further inefficiencies in this case.

1Throughout, by Wardrop equilibrium we refer to the equilibrium of the
same network structure without any traffic engineering—without any optimal
routing within subnetworks.

Section VI considers the choice of routing policy by a single
service provider and provides conditions under which traffic
engineering is (individually) optimal for a provider in parallel
link topologies. We conclude in Section VII.

II. PRELIMINARIES: DIFFERENT ROUTING PARADIGMS

We consider a directed network G = (V, A), with node set
V , link (or edge) set A, and w source-destination node pairs
{s1, t1}, . . . , {sw, tw}. Let W = {1, . . . , w}. Let Pi denote
the set of paths available from si to ti using the edges in A;
we view each path p ∈ Pi as a subset of A, p ⊂ A. Define
P = ∪i∈W Pi. Each link j ∈ A has a strictly increasing,
nonnegative latency function lj(xj) as a function of the flow
on link j.2 We assume that Xi units of flow are to be routed
from si to ti, for all i ∈ W , and we define X = [X1, . . . , Xw].
We call the tuple R = (V, A, P, s, t,X, l) a routing instance.
We denote the set of routing instances R = (V, A, P, s, t,X, l)
by the set R. In the following, we will also be interested in
routing instances in which the latency functions of all links are
restricted to belong to a certain class of functions. We denote
the set of routing instances R in which all latency functions
are convex (affine and concave, respectively) by Rconv (Raff

and Rconc, respectively).

A. Socially Optimal Routing

Given a routing instance R = (V, A, P, s, t,X, l), we define
a social optimum, denoted by xSO(R), as an optimal solution
of the following optimization problem:

minimize
∑
j∈A

xj lj(xj) (1)

subject to
∑

p∈P :j∈p

yp = xj , j ∈ A;

∑
p∈Pi

yp = Xi, i ∈ W ;

yp ≥ 0, p ∈ P.

This optimization problem minimizes the total (or equivalently
the average) delay experienced over all paths. Under our
assumption that each latency function is continuous, it follows
that at least one social optimum always exists. The total
latency cost at a social optimum is given by:

C(xSO(R)) =
∑
j∈A

xSO
j (R)lj(xSO

j (R)).

B. Selfish Routing

When traffic routes “selfishly”—that is, when sources
choose minimum delay end-to-end paths—all paths with
nonzero flow must have the same total delay. A flow con-
figuration with this property is called a Wardrop equilibrium.
Under the assumptions on the latency functions (i.e., each lj
is continuous and strictly increasing), it is well-known that the
Wardrop equilibrium flow vector for a given routing instance

2Throughout the paper, we will refer to lj as the latency function, though
lj can be used to model congestion metrics other than latency (e.g., loss).



ACEMOGLU et al.: PARTIALLY OPTIMAL ROUTING 3

R, denoted xWE(R), is the unique optimal solution to the
following optimization problem (see e.g., [10], [12]):

minimize
∑
j∈A

∫ xj

0

lj(z) dz (2)

subject to
∑

p∈P :j∈p

yp = xj , j ∈ A;

∑
p∈Pi

yp = Xi, i ∈ W ;

yp ≥ 0, p ∈ P.

The total latency cost at the Wardrop equilibrium is given by

C(xWE(R)) =
∑
j∈A

xWE
j (R)lj(xWE

j (R)). (3)

Equivalently a feasible solution xWE for a routing instance
R is a Wardrop equilibrium if and only if it satisfies∑

j∈A

lj(xWE
j )(xWE

j − xj) ≤ 0, (4)

for all feasible solutions x for the same routing instance; see,
for example, [13], [14].

C. Partially Optimal Routing

Let us now assume that a single network provider controls
a subnetwork with unique entry and exit points; within this
domain, the provider optimizes performance of traffic flow.
Formally, we assume there is a collection of directed sub-
graphs (subnetworks) inside of G. Within a subnetwork G0 =
(V0, A0), a service provider optimally routes all incoming
traffic. Let s0 ∈ V0 denote the unique entry point to G0,
and let t0 ∈ V0 denote the unique exit point from G0. Let P0

denote the set of available paths from s0 to t0 using the edges
in A0. We make the assumption that every path in P passing
through any node in V0 must contain a path in P0 from s0

to t0; this is consistent with our assumption that G0 is an
independent autonomous system, with a unique entry and exit
point. We call R0 = (V0, A0, P0, s0, t0) a subnetwork of G,
and with a slight abuse of notation, we say that R0 ⊂ R.

Given an incoming amount of flow X0, the network
provider chooses a routing of flow to solve the following
optimization problem to minimize total (or average) latency:

minimize
∑
j∈A0

xj lj(xj) (5)

subject to
∑

p∈P0:j∈p

yp = xj , j ∈ A0;

∑
p∈P0

yp = X0;

yp ≥ 0, p ∈ P0.

In this optimization problem, the subnetwork owner sees
an incoming traffic amount X0, and chooses the optimal
routing of this flow through the subnetwork. This is a formal
abstraction of the process of traffic engineering via link
weight optimization, carried out by many network providers
to optimize intradomain performance; see, e.g., [15].

Let L(X0) denote the optimal value of the preceding
optimization problem. We define l0(X0) = L(X0)/X0 as the

effective latency of partially optimal routing in the subnetwork
R0, with flow X0 > 0. If traffic in the entire network G
routes selfishly, while traffic is optimally routed within G0,
then replacing G0 by a single link with latency l0 will leave
the Wardrop equilibrium flow unchanged elsewhere in G.

We have the following simple lemma that provides basic
properties of l0 and L. The proof is straightforward and is
omitted; details can be found in [16].

Lemma 1 Assume that every latency function, lj , is a strictly
increasing, nonnegative, and continuous function. Then:
(a) The effective latency l0(X0) is a strictly increasing

function of X0 > 0.
(b) Assume further that each lj is a convex function. The

total cost L(X0) is a convex function of X0.

In light of the preceding lemma, we can extend the defini-
tion of l0 so that l0(0) = limx0↓0 l0(x0); the preceding limit
is well defined since l0 is strictly increasing.

To define the overall network performance under par-
tially optimal routing, first suppose that there is a sin-
gle independently-operated subnetwork. Given a routing in-
stance R = (V, A, P, s, t,X, l), and a subnetwork R0 =
(V0, A0, P0, s0, t0) defined as above, we define a new routing
instance R′ = (V ′, A′, P ′, s, t,X, l′) as follows:

V ′ = (V \ V0)
⋃

{s0, t0};
A′ = (A \ A0)

⋃
{(s0, t0)};

P ′ corresponds to all paths in P , where any subpath in P0

is replaced by the link (s0, t0); and l′ consists of latency
functions lj for all edges in A \ A0, and latency l0 for the
edge (s0, t0). Thus R′ is the routing instance R with the
subgraph G0 replaced by a single link with latency l0; we
call R′ the equivalent POR instance for R with respect to R0.
The overall network flow in R with partially optimal routing
in R0, xPOR(R, R0), is defined to be the Wardrop equilibrium
flow in the routing instance R′:

xPOR(R, R0) = xWE(R′).

In other words, it is equilibrium with traffic routed selfishly
given the effective latency l0 of the subnetwork R0. Note also
that this formulation leaves undefined the exact flow in the
subnetwork R0; this is to be expected, since problem (5) may
not have a unique solution.

The total latency cost of the equivalent POR instance for R
with respect to R0 is given by

C(xPOR(R, R0)) =
∑
j∈A′

xPOR
j (R, R0)lj(xPOR

j (R, R0)).

The definition immediately generalizes when there are
multiple independently-operated subnetworks. Let Rj

0 =
(V j

0 , Aj
0, P

j
0 , sj

0, t
j
0) for j = 1, 2, ..., J denote the subnetworks,

each represented by a directed subgraph Gj
0. Define

V ′ = (V \
J⋃

j=1

V j
0 )

J⋃
j=1

{sj
0, t

j
0};

A′ = (A \
J⋃

j=1

Aj
0)

J⋃
j=1

{(sj
0, t

j
0)}.
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Fig. 1. A network for which POR leads to a worse performance relative to
selfish routing. Figures (b) and (c) illustrate representing the subnetwork with
a single link with Wardrop effective latency l̃0(X0) and optimal effective
latency l0(X0), respectively.

Let R′ be the routing instance R with each subgraph Gj
0

replaced by a single link with effective latency lj0. The
partially optimal routing flow xPOR(R, {Rj

0}J
j=1), is again the

Wardrop equilibrium flow in the routing instance R′. In the
remainder of the paper, we assume without loss of generality
that there is a single subnetwork in the overall network.

III. PARTIALLY OPTIMAL ROUTING AND GLOBAL

PERFORMANCE

We first consider the effect of optimal routing within
subnetworks on the performance of the overall network. One
might conjecture that optimally routing traffic within subnet-
works should improve the overall performance. The following
example shows that this need not be the case.

Example 1 Consider the network G = (V, A) with source
and destination nodes s, t ∈ V illustrated in Figure 1(a). Let
R = (V, A, P, s, t, 1, l) be the corresponding routing instance,
i.e., one unit of flow is to be routed over this network. The
subnetwork G0 consists of the two parallel links in the middle,
links 5 and 6, with latency functions

l5(x5) = 0.31, l6(x6) = 0.4 x6.

The latency functions for the remaining links in the network
are given by

l1(x1) = x1, l2(x2) = 3.25,

l3(x3) = 1.25, l4(x4) = 3x4.

Assume first that the flow through the subnetwork G0 is
routed selfishly, i.e., according to the Wardrop equilibrium.
Given a total flow X0 through the subnetwork G0, the effective
Wardrop latency can be defined as

l̃0(X0) =
1

X0
C(xWE(R0)), (6)

[cf. Eq. (3)], where R0 is the routing instance corresponding to
the subnetwork G0 with total flow X0. The effective Wardrop
latency for this example is given by

l̃0(X0) = min{0.31, 0.4X0}.
Substituting the subnetwork with a single link with latency
function l̃0 yields the network in Figure 1(b). It can be seen
that selfish routing over the network of Figure 1(b) leads to the
link flows xWE

1 = 0.94 and XWE
0 = 0.92, with a total cost

of C(xWE(R)) = 4.19. It is clear that this flow configuration
arises from a Wardrop equilibrium in the original network.

Assume next that the flow through the subnetwork G0 is
routed optimally, i.e., as the optimal solution of problem (5)
for the routing instance corresponding to G0. Given a total
flow X0 through the subnetwork G0, the effective latency of
optimal routing within the subnetwork G0 can be defined as

l0(X0) =
L(X0)

X0
,

where L(X0) is the optimal value of problem (5). The effective
optimal routing latency for this example is given by

l0(X0) =
{

0.4X0, if 0 ≤ X0 ≤ 0.3875;
0.31 − 0.0961

1.6X0
, if X0 ≥ 0.3875.

Substituting the subnetwork with a single link with latency
function l0 yields the network in Figure 1(c). Note that selfish
routing over this network leads to the partially optimal routing
(POR) equilibrium. It can be seen that at the POR equilibrium,
the link flows are given by xPOR

1 = 1 and XPOR
0 = 1, with

a total cost of C(xPOR(R)) = 4.25, which is strictly greater
than C(xWE(R)).

In the preceding example, when the subnetwork optimizes
intradomain performance, we see a degradation in global net-
work performance. This is reminiscent of Braess’ paradox, a
classic example of degradation in global network performance
despite local improvements (see, for example, [12]). Braess’
paradox occurs in a network if reducing the link latency
functions increases the total latency in the network. We now
investigate the relationship between Braess’ paradox and the
performance degradation observed in Example 1.

Definition 1 (Braess’ paradox) Consider a routing instance
R = (V, A, P, s, t,X, l) and a subnetwork R0 =
(V0, A0, P0, s0, t0) ⊂ R. We say that Braess’ paradox occurs
in R centered at R0 if there exists another routing instance
Rm = (V, A, P, s, t,X,m), with a vector of strictly increas-
ing, nonnegative latency functions, m = (mj , j ∈ A), such
that for all xj ≥ 0,

mj(xj) ≤ lj(xj), ∀ j ∈ A0, mj(xj) = lj(xj), ∀ j /∈ A0,

and
C(xWE(Rm)) > C(xWE(R)).

In our definition we have explicitly fixed a subnetwork R0

within which we locally “improve” performance; formally, the
routing instance R′ differs from R only by a reduction of the
latency functions on some (or all) links. Nevertheless, in a
network topology where Braess’ paradox occurs, this local
change can yield a higher total latency.
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Similarly, the following definition captures the counterin-
tuitive phenomenon exhibited in Example 1, where traffic
engineering within some subnetwork, i.e., partially optimal
routing, leads to a degradation in the overall performance
compared to pure selfish routing.

Definition 2 (POR paradox) Consider a routing instance
R = (V, A, P, s, t,X, l), and a subnetwork R0 =
(V0, A0, P0, s0, t0). We say that the POR paradox (partially
optimal routing paradox) occurs in R with respect to R0 if

C(xPOR(R, R0)) > C(xWE(R)).

Intuitively, the POR paradox appears to be a form of
“generalized Braess’ paradox”, in the following sense. Given
a total flow X0 routed through the subnetwork G0, we define
the effective Wardrop latency l̃0, as follows:

l̃0(X0) =
1

X0

∑
j∈A0

xWE
j (R′)lj(xWE

j (R′)) =
C(xWE(R′))

X0
,

(7)
where R′ = (V0, A0, P0, s0, t0, X0, l) is a routing instance
corresponding to the subnetwork R0 with total flow X0 [cf.
Eq. (6)]. As in Lemma 1, it is straightforward to show
that l̃0 is strictly increasing. Furthermore, it is clear that
l̃0(X0) ≥ l0(X0) for all X0 ≥ 0, since xWE(R′) is a feasible
solution to problem (5). Thus when we contrast xPOR(R) and
xWE(R), it is as if we are lowering the effective latency of
the subnetwork R0. If this increases the total latency, then we
are observing a form of Braess’ paradox.

In fact, it is possible to show a stronger result: whenever
the POR paradox occurs in R with respect to some R0 ⊂ R,
then Braess’ paradox occurs in R centered at R0. This result
is stronger than the “generalized Braess’ paradox” discussed
in the preceding paragraph, because it shows that Braess’
paradox occurs within the original instance R without altering
the network topology.

Proposition 1 Consider a routing instance R =
(V, A, P, s, t,X, l) and a subnetwork R0 =
(V0, A0, P0, s0, t0) ⊂ R. Assume that the POR paradox
occurs in R with respect to R0. Then Braess’ paradox occurs
in R centered at R0.

Proof: Our approach will be to uniformly lower the
latency functions in the subnetwork R0, such that we exactly
ensure at a Wardrop equilibrium the effective latency of R0

is given by l0, the effective latency of optimal routing within
R0. This will allow selfish routing to “replicate” the partially
optimal routing of flow, and imply Braess’ paradox.

Let xWE(R) be the Wardrop equilibrium flow for the
routing instance R, with corresponding path flows yWE(R).
Similarly, let xPOR(R, R0) be the flow with partially optimal
routing in R0, with corresponding path flows yPOR(R, R0).
Let X0 = xPOR

s0t0 (R, R0) represent the flow routed through
the subnetwork R0 under partially optimal routing. Note that
X0 > 0 since by assumption POR paradox occurs in R with
respect to R0. Let l0 denote the effective latency of R0 under
partially optimal routing, and l̃0 denote the effective latency
of R0 under selfish routing [cf. Eq. (7)].

Define a routing instance R′
0 = (V0, A0, P0, s0, t0, X0, l)

and let xWE(R′
0) be the Wardrop equilibrium flow for the

routing instance R′
0.

We define a new collection of latency functions as follows.
For all j �∈ A0, define mj = lj . For j ∈ A0, we choose a
new strictly increasing, nonnegative latency function mj with
mj(xj) ≤ lj(xj) for all xj ≥ 0, such that

mj(xWE
j (R′

0)) =
l0(X0)
l̃0(X0)

lj(xWE
j (R′

0)).

Observe that such a choice is possible, since l0(X0) ≤ l̃0(X0).
Let T0 = (V0, A0, P0, s0, t0, X0,m); i.e., T0 is the routing

instance R′
0 with latencies replaced by m. We claim that

xWE(T0) = xWE(R′
0). This follows from the definition of m:

all values mj(xWE
j (R′

0)) are proportional to lj(xWE
j (R′

0)),
with common constant of proportionality l0(X0)/l̃0(X0).
Thus if xWE(R′

0) is the Wardrop equilibrium flow with
latencies l, it must remain so with latencies m. Furthermore,
observe that for any path p with positive flow, we have∑

j∈p

mj(xWE
j (T0)) =

l0(X0)
l̃0(X0)

∑
j∈p

lj(xWE
j (R′

0)) = l0(X0),

because the second summation above is equal to l̃0(X0). Thus
we conclude

C(xWE(T0)) =
∑
j∈A0

xWE
j (T0)mj(xWE

j (T0)) = X0l0(X0).

(8)
Let T = (V, A, P, s, t,X,m). Define a feasible flow x =

[xj ]j∈A as follows:

xj =
{

xPOR
j (R, R0), if j �∈ A0;

xWE
j (R′

0), if j ∈ A0.

We claim that xWE(T ) = x. This claim follows easily since
we have already established that xWE(T0) = xWE(R′

0), and
(8) holds. In the flow x for the routing instance T , the effective
latency perceived by any flow crossing the subnetwork R0

is exactly equal to the partially optimal routing effective
latency l0(X0) (by (8)). But then since all routing outside
the subnetwork R0 is performed according to xPOR(R, R0),
we conclude that in fact xWE(T ) = x, as required.

Combining the preceding, we obtain∑
j∈A

xWE
j (T )mj(xWE

j (T ))

=
∑
j �∈A0

xPOR
j (R, R0)lj(xPOR

j (R, R0))

+
∑
j∈A0

xWE
j (R′

0)mj(xWE
j (R′

0))

=
∑
j �∈A0

xPOR
j (R, R0)lj(xPOR

j (R, R0)) + X0l0(X0)

=
∑
j∈A′

xPOR
j (R, R0)lj(xPOR

j (R, R0))

= C(xPOR(R, R0)).

We assumed that the POR paradox occurs in R with respect
to R0; thus we obtain from the preceding that

C(xWE(T )) = C(xPOR(R, R0)) > C(xWE(R)),
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implying that Braess’ paradox occurs in R centered at R0.
An immediate corollary of the preceding proposition is the

following:

Corollary 1 Given a routing instance R, if Braess’ paradox
does not occur in R, then partially optimal routing with respect
to any subnetwork always improves the network performance.

Since Milchtaich, [17], has shown that Braess’ paradox
does not occur in graphs with the serial-parallel structure,
this corollary implies that as long as the network under
consideration has a serial-parallel structure (for example, a
network of parallel links), partially optimal routing always
improves the overall network performance.

IV. EFFICIENCY OF PARTIALLY OPTIMAL ROUTING

We have seen in Example 1 that partially optimal routing
can actually worsen performance relative to the Wardrop
equilibrium. In this section, we quantify the inefficiency of
partially optimal routing. Our metric of efficiency is the ratio
of the total cost at the social optimum to the total cost
at the partially optimal routing solution, C(xSO)/C(xPOR).
Throughout, we assume that all independently-operated sub-
networks can be represented as subgraphs with unique entry
and exit points.

We will establish two main theorems. The first provides a
tight bound on the loss of efficiency when all latency functions
are affine; and the second provides a tight bound on the loss
of efficiency when all latency functions are polynomials of
bounded degree.

We start with a simple result that compares the worst-
case efficiency loss of partially optimal routing with that of
selfish routing. These relations will be useful in finding tight
bounds on the efficiency loss of partially optimal routing.
Recall that Rconv , Raff , and Rconc denote the class of all
routing instances where latency functions are convex, affine,
and concave, respectively.

Proposition 2 (a) For all R′ ∈ {Rconv,Raff ,Rconc}, we
have

inf
R∈R′
R0⊂R

C(xSO(R))
C(xPOR(R, R0))

≤ inf
R∈R′

C(xSO(R))
C(xWE(R))

. (9)

(b)

inf
R∈R

R0⊂R

C(xSO(R))
C(xPOR(R, R0))

= inf
R∈R

C(xSO(R))
C(xWE(R))

. (10)

(c)

inf
R∈Raff

R0⊂R

C(xSO(R))
C(xPOR(R, R0))

≥ inf
R∈Rconc

C(xSO(R))
C(xWE(R))

.

(11)

Proof:

(a) Given an arbitrary routing instance R =
(V, A, P, s, t,X, l), simply let R0 consist of a single
link j ∈ A from the routing instance R, with the
corresponding latency function lj . Then it is clear that
xPOR(R, R0) = xWE(R); thus for any instance on the

right hand side of (9) we have constructed an equivalent
instance on the left hand side with the same objective
function value, establishing the relation.

(b) The argument in part (a) establishes

inf
R∈R

R0⊂R

C(xSO(R))
C(xPOR(R, R0))

≤ inf
R∈R

C(xSO(R))
C(xWE(R))

.

To show the reverse inequality, let R ∈ R and R0 ⊂ R.
Let R′ be the equivalent POR instance for R with respect
to R0. Then it can be seen that

C(xPOR(R, R0)) = C(xWE(R′)),

C(xSO(R)) = C(xSO(R′)).

Hence, for every feasible solution of the optimization
problem on the left-hand side of relation (10), we have
a feasible solution for the problem on the left-hand side
that has the same objective function value, establishing
the relation.

(c) This follows by combining the argument in part (b) with
Lemma 3.

In the remainder of this section we will prove several tight
bounds on the efficiency loss of partially optimal routing. We
begin by recalling the following key results in the analysis of
selfish routing, due to Roughgarden and Tardos [10].

Proposition 3 (Roughgarden-Tardos (2002) [10])

(a)

inf
R∈Rconv

C(xSO(R))
C(xWE(R))

= 0.

(a) Consider a routing instance R = (V, A, P, s, t, X, l)
where lj is an affine latency function for all j ∈ A. Then,

C(xSO(R))
C(xWE(R))

≥ 3
4
.

Furthermore, the bound above is tight.

The first result shows that the worst-case efficiency loss of
selfish routing is unbounded, when latency functions are only
known to be convex. However, if latency functions are affine,
then the proposition guarantees the tight bound on efficiency
loss in part (b).

Our main theorem in this section is an extension of the
results in Proposition 3 to the setting of partially optimal
routing.

Theorem 1

(a)

inf
R∈Rconv

R0⊂R

C(xSO(R))
C(xPOR(R, R0))

= 0.

(a) Consider a routing instance R = (V, A, P, s, t, X, l)
where lj is an affine latency function for all j ∈ A; and
a subnetwork R0 of R. Then:

C(xSO(R))
C(xPOR(R, R0))

≥ 3
4
.
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Furthermore, the bound above is tight.

Proof: Part (a) of the theorem is an immediate corollary
of Proposition 2(a) (for R′ = Rconv) and Proposition 3(b).

The remainder of the proof establishes part (b) of the
theorem by proving two lemmas. The first provides a tight
bound of 3/4 on the ratio of the optimal routing cost to the
selfish routing cost for routing instances in which the latency
function of each link is a concave function. This lemma is
relevant because when all latency functions are affine, the
effective latency of any subnetwork under partially optimal
routing is concave, as shown in the second lemma.

The proof of the following lemma uses a geometric argu-
ment that was used in [18]. This result also follows from the
analysis in [11]. Here, we provide an alternative proof, which
will be useful in our subsequent analysis.

Lemma 2 Let R ∈ Rconc be a routing instance where all
latency functions are concave. Then,

C(xSO(R))
C(xWE(R))

≥ 3
4
.

Furthermore, this bound is tight.

Proof: Consider a routing instance R ∈ Rconc, with
R = (V, A, P, s, t,X, l). Let xWE be the flow configuration
at a Wardrop equilibrium. By Eq. (4), for all feasible solutions
x of Problem (2), we have

C(xWE) =
∑
j∈A

xWE
j lj(xWE

j ) (12)

≤
∑
j∈A

xj lj(xWE
j ) (13)

=
∑
j∈A

xj lj(xj) +
∑
j∈A

xj(lj(xWE
j ) − lj(xj)).

We next show that for all j ∈ A, and all feasible solutions x
of Problem (2), we have

xj(lj(xWE
j ) − lj(xj)) ≤ 1

4
xWE

j lj(xWE
j ). (14)

If xj ≥ xWE
j , then since lj is nondecreasing, we have

lj(xWE
j ) ≤ lj(xj), establishing the desired relation. Assume

next that xj < xWE
j . The term xj(lj(xWE

j )− lj(xj)) is equal
to the area of the shaded rectangle in Figure 2. Consider the
triangle formed by the three points

(0, lj(xWE
j )), (0, lj(xj) − l′j(xj)xj),(
lj(xWE

j ) − lj(xj) + l′j(xj)xj

l′j(xj)
, lj(xWE

j )

)
.

Denote this triangle by T . It can be seen that

xj(lj(xWE
j ) − lj(xj)) ≤ 1

2
Area(T ).

By the concavity of lj , we further have

Area(T ) ≤
∫ xWE

j

0

∫ lj(x
WE
j )

lj(x)

dydx ≤ xWE
j lj(xWE

j )
2

,

i.e., the area of triangle T is less than or equal to the
area between the curves y = lj(x) and y = lj(xWE

j )

l (x )j j

x
j
WE

x
j
WE

������
������
������
������

������
������
������
������

xx
j

              
 

l (         )j

jl (    )x

Fig. 2. Illustration of the proof of Lemma 2.

in the interval x ∈ [0, xWE
j ], which in turn is less than

or equal to half of the area xWE
j lj(xWE

j ). Combining the
preceding two relations, we obtain Eq. (14), which implies∑

j∈A xj(lj(xWE
j )− lj(xj)) ≤ (1/4)

∑
j∈A xWE

j lj(xWE
j ) =

(1/4)C(xWE).
Combining with Eq. (13), we see that for all feasible

solutions x of Problem (2), we have

3
4
C(xWE) ≤

∑
j∈A

xj lj(xj).

Since the socially optimal flow configuration xSO is a feasible
solution for Problem (2), we obtain the desired result.

The following lemma, which establishes that the effective
latency l0 of a subnetwork under partially optimal routing is
concave when the latency functions are affine, completes the
proof of part (b) of the theorem.

Lemma 3 Let R0 = (V0, A0, P0, s0, t0) be a subnetwork.
Assume that the latency functions of all links in the subnet-
work are nonnegative affine functions, i.e., for all j ∈ A0,
lj(xj) = ajxj + bj , where aj ≥ 0 and bj ≥ 0. Let l0(X0)
denote the effective latency of partially optimal routing of X0

units of flow in the subnetwork R0. Then l0(X0) is a concave
function of X0.

Proof of Lemma: Since the lj are affine, for all X0 ≥ 0, we
have

l0(X0) = minyp≥0, p∈P

∑
j∈A0

ajx
2
j

X0
+

bjxj

X0

subject to
∑

p∈P0:j∈p

yp = xj , j ∈ A0;

∑
p∈P0

yp = X0.

Using the change of variables ŷp = yp

X0
for all p ∈ P0, and

x̂j = xj

X0
for all j ∈ A0 in the preceding optimization problem,
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we obtain

l0(X0) = minŷp≥0, p∈P0

∑
j∈A0

ajX0x̂
2
j + bj x̂j (15)

subject to
∑

p∈P0:j∈p

ŷp = x̂j , j ∈ A0;

∑
p∈P0

ŷp = 1.

Denote the feasible set of problem (15) by Y , i.e.,

Y =

⎧⎨
⎩y

∣∣∣ yp ≥ 0, ∀ p ∈ P0,
∑
p∈P0

yp = 1

⎫⎬
⎭ .

Then by defining xj(y) =
∑

p∈P0:j∈p yp, we can write (15)
equivalently as:

l0(X0) = inf
y∈Y

⎡
⎣
⎛
⎝∑

j∈A0

ajxj(y)2

⎞
⎠X0 +

⎛
⎝∑

j∈A0

bjxj(y)

⎞
⎠
⎤
⎦ .

But now observe that l0(X0) is the infimum of a collection of
affine functions of X0. By a standard result in convex analysis
(see, e.g., [19], Proposition 1.2.4(c)), it follows that l0(X0) is
concave. �

Combining Lemmas 2 and 3 with Proposition 2 completes
the proof of part (b) of Theorem 1.

The preceding proof exploits the fact that the effective
latency l0 is concave in the subnetwork to establish a tight
efficiency loss bound for partially optimal routing with respect
to the social optimum, under the assumption that all latency
functions are affine. We can apply a similar approach to
develop bounds on the efficiency loss of partially optimal
routing even when the latency functions may not be affine;
our starting point is a result of Correa et al. [18], extending
earlier work of Roughgarden [20], that gives bounds on the
efficiency loss of selfish routing with general latency functions.

To state their result, we require the following definitions.
Given a class of latency functions L, we define β(L) as:

β(L) = sup
l∈L, x≥0

β(l, x), (16)

with

β(l, x) = max
z≥0

(l(x) − l(z))z
l(x)x

, (17)

Intuitively β is measure of the steepness of a class of latency
functions; for all the cases we will consider, it is equivalent to
1−1/α(L), where α(L) is the steepness parameter defined by
Roughgarden [20]. The following proposition was first proven
by Roughgarden [20] for convex and differentiable latency
functions, and then extended by Correa et al. to all classes of
latency functions [18].

Proposition 4 Let L be a class of separable latency functions.
Consider a routing instance R = (V, A, P, s, t,X, l) with lj ∈
L for all j ∈ A. Then

C(xSO(R))
C(xWE(R))

≥ (1 − β(L)).

Furthermore, the bound above is tight.

We emphasize that β(L) = 1/4 when L is the class of
affine latency functions, so the preceding proposition is indeed
a generalization of Proposition 3.

In the spirit of Proposition 4, the following theorem gener-
alizes the results of Theorem 1 to networks where latencies
are nonnegative polynomials.

Theorem 2 Let Ld be a class of nonnegative separable poly-
nomial latency functions of degree d. Consider a routing
instance R = (V, A, P, s, t, X, l) with lj ∈ Ld for all j ∈ A,
and a subnetwork R0 of R. Then,

C(xSO(R))
C(xPOR(R, R0))

≥ (1 − β(Ld)),

where β(Ld) is defined in Eqs. (16)-(17). Furthermore, the
bound above is tight.

Proof: The proof proceeds as follows. First, we establish
a bound on the efficiency loss of a routing instance where each
latency function is the pointwise infimum of a collection of
latency functions in a prespecified class. Then, we establish
that if all latency functions are polynomials, the effective
latency of any subnetwork under partially optimal routing is
an infimum of polynomials. Combining these claims will yield
the result of the proposition.

Our starting point is the following observation of Correa
et al. ( [18], particularly Lemma 2.3): given a class of
separable latency functions L and a routing instance R =
(V, A, P, s, t, X, l) with lj ∈ L for all j ∈ A, the following
inequality holds:

xj lj(xWE
j (R)) ≤ xj lj(xj) + β(L)xWE

j (R)lj(xWE
j (R)),

∀ j ∈ A, ∀ x ≥ 0. (18)

Using this fact, we can prove the following lemma.

Lemma 4 Let Ls be a class of nonnegative separable latency
functions which is closed under scaling by a constant k ≤ 1
(i.e., for all l ∈ Ls, we have kl ∈ Ls for all scalars k ≤ 1).
Let R = (V, A, P, s, t,X, l) be a routing instance with

lj(x) = inf
z∈Zj

{f(x, z)}, ∀ j ∈ A, (19)

where: Zj is a compact set; for each x, f(x, ·) is a continuous
function of z; and for each z ∈ Zj , f(·, z) ∈ Ls. Then:

C(xSO(R))
C(xWE(R))

≥ (1 − β(Ls)).

Proof of Lemma. We use the bound in Eq. (18) together with
a similar geometric argument used in the proof of Lemma 2
to prove the result.

Let x be a feasible solution of problem (2). By the definition
of lj [cf. Eq. (19)], for all j ∈ A, there exists some z̄j such
that

lj(xj) = f(xj , z̄j), (20)

and

lj(xWE
j (R)) ≤ f(xWE

j (R), z̄j). (21)
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Let c =
f(xWE

j (R),z̄j)

lj(xWE
j (R))

≥ 1 and define

f̄j(y) =
f(y, z̄j)

c
, ∀ y ≥ 0.

Since c ≥ 1 and f(y, z̄j) ≥ 0, it follows that f̄j(y) ≤ f(y, z̄j)
for all y ≥ 0, which by Eq. (20) implies that

f̄j(xj) ≤ lj(xj).

In view of the assumption that the class Ls is closed under
scaling by a constant k ≤ 1, we have f̄j ∈ Ls. Moreover,
since f̄j(xWE

j (R)) = lj(xWE
j (R)), xWE(R) is a Wardrop

equilibrium of the routing instance R̄ = (V, A, P, s, t, X, l̄),
where l̄j = f̄j for all j ∈ A. Combining the preceding, we
obtain

xj

(
lj(xWE

j (R)) − lj(xj)
)

≤ xj

(
f̄j(xWE

j (R)) − f̄j(xj)
)

≤ β(Ls)C(xWE(R)),

Summing over all j ∈ A and using an argument similar to
the proof of Lemma 2 [in particular Eq. (13)], we obtain the
desired result. �

The following lemma characterizes effective latencies in
the special case where all latency functions are nonnegative
polynomials. The proof is similar to the proof of Lemma 3,
and is omitted.

Lemma 5 Let R0 = (V0, A0, P0, s0, t0) be a subnetwork. As-
sume that the latency functions of all links in the subnetwork
are nonnegative polynomials of degree d, i.e., for all j ∈ A0,
lj(xj) is a polynomial of degree d such that lj(xj) ≥ 0 for all
xj ≥ 0. Let l0(X0) denote the effective latency of partially
optimal routing of X0 units of flow in the subnetwork R0.
Then l0(X0) is given by

l0(X0) = inf
y∈Y

{f(X0, y)},

where Y is a nonempty compact set, f(X0, y) is a continuous
function of y, and for each y ∈ Y , f(·, y) is a nonnegative
polynomial of degree d.

Since the class of polynomial functions is closed under
scaling by a constant, the preceding two lemmas immediately
imply the conclusion of the theorem, as required.

The preceding theorem, together with Theorem 1, gives a
tight characterization of the efficiency loss of partially optimal
routing when all independently-operated subnetworks have
unique entry and exit points. In particular, observe that, as
long as latency functions are polynomial of bounded degree,
the worst-case efficiency loss under partially optimal routing
is no worse than the same worst-case value for pure selfish
routing.

V. SUBNETWORKS WITH MULTIPLE ENTRY AND EXIT

POINTS

We now turn to a discussion of the efficiency of partially
optimal routing when independently-operated subnetworks can
have multiple entry and exit points. Unfortunately, in this
case efficiency loss may be unbounded for even in the most

4 4
l (x )

A

B C

D

1

2

3

5

z units

1 unit

(1 + z) units

1 3

2

5

l (x ) l (x )

l (x )

l (x )

Fig. 3. A subnetwork with multiple exit points.

restrictive case where latency functions are linear. The next
example shows that the efficiency loss may be unbounded for
networks that include subnetworks with multiple entry and
exit points.

Example 2 Consider the general network illustrated in Figure
3.

The subnetwork consists of links 1, 2, and 3 with latency
functions

l1(x1) = 0, l2(x2) = ax2, l3(x3) = 0,

for some a > 0. The remaining links in the network have
latency functions

l4(x4) = bx4, l5(x5) = x5,

for some b > a > 0.
The link flows at the social optimum are given by:

xSO =
(

0,
1

1 + a
,

1
1 + a

, z,
a

1 + a

)
.

The cost of the optimal solution is

C(xSO) = bz2 +
a

(1 + a)2
+

a2

(1 + a)2
.

For any a > 0, the optimal routing for the subnetwork is
to route all the incoming flow along link 1. To find the POR
equilibrium, let x1 denote the amount of traffic that is routed
over the subnetwork (i.e., along link 1). Assuming that bz < 1,
we solve for x1 in the Wardrop conditions

b(z + x1) = (1 − x1).

Hence the link flows at the POR equilibrium are given by:

xPOR =
(

1 − bz

1 + b
, 0, 0,

1 + z

1 + b
,
b + bz

1 + b

)
.

The cost of the POR equilibrium is

C(xPOR) = b

(
1 + z

1 + b

)2

+
(

b + bz

1 + b

)2

.

For a fixed b > 0, taking the limit as a → 0 and z → 0,
we obtain

C(xSO) → 0, C(xPOR) → b

1 + b
> 0,

thus showing that the relative efficiency approaches zero.
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Fig. 4. A special multiple entry-exit subnetwork, where the shaded area
represents a single entry-exit subnetwork with an arbitrary topology.

Nevertheless, there are at least two important special cases
where one can show that the efficiency loss of partially optimal
routing is bounded. The first is illustrated by the network
topology in Figure 4. Let s1, . . . , sn be n entry points, and
t1, . . . , tn be n exit points. Assume that xi units of flow enters
the network at node si, and is destined to node ti, for all
i = 1, . . . , n. The shaded area represents a single entry-exit
subnetwork with an arbitrary topology.

For this structure, it is evident that the POR effective latency
between nodes si and ti is given by

l̃i(xi, X) = li(xi) + l̂i(xi) + l0(X),

where X =
∑n

i=1 xi, and l0 is the effective latency of optimal
routing within the single entry-exit subnetwork, defined as in
our previous analysis.

Given this structure, immediate corollaries of Theorems 1 or
2 imply that, under the assumptions of these theorems, exactly
the same results apply to the model of Figure 4.

A bound on efficiency loss can also be provided in the case
when the following three conditions are satisfied. First, we
assume all latencies in the entire network are affine. Second,
we assume all latencies in the subnetwork under consideration
are linear: i.e., �j(xj) = bjxj for all j in the subnetwork.
Third, we assume that every source-destination pair has a
unique entry to, and exit from, the subnetwork. Because
of the latter assumption, it is straightforward to establish
that a Wardrop equilibrium in the global network leads to
a Wardrop equilibrium within the subnetwork. Furthermore,
the Wardrop equilibrium within the subnetwork must optimize
intradomain performance. The latter claim follows because
when latencies are linear, the social optimum and Wardrop
equilibrium coincide in view of the fact that the objective
function for (2) differs only by a factor of 1/2 from the
objective function for (1). As a result, the POR equilibrium in
this setting is equivalent to the Wardrop equilibrium, and thus
the efficiency loss is bounded by 3/4 (cf. Proposition 3).

VI. PARTIALLY OPTIMAL ROUTING AND SUBNETWORK

PERFORMANCE

In this section, we consider a model where a subnetwork
chooses its routing policy to achieve the minimum (total)
latency within its subnetwork. This amounts to assuming that
the subnetwork ignores revenues from transmission, which
is natural in this context, since we have not considered
the pricing decisions of service providers (see Concluding

l (x ) = 1
1 1

l (x ) = x
2 2 2

2

l (x ) = c
3 3

1 unit

Fig. 5. A parallel link network. Links 1 and 2 form a subnetwork that is
controlled by an independent administrator.

Remarks). While optimal routing seems like the natural means
to achieve this goal, end-to-end route selection may counteract
any expected performance gains from this type of intradomain
traffic engineering. As a result, the provider may prefer to
allow traffic to route selfishly in order to reduce flow and total
delay in its subnetwork. The following example illustrates this
scenario.

Example 3 Consider the parallel-link network illustrated in
Figure 5. The latency functions are given by l1(x1) =
1, l2(x2) = x2

2, l3(x3) = c, for some constant c, 0 < c < 1.
Assume that links 1 and 2 form a subnetwork, denoted by G0,
which is controlled by an independent administrator. Assume
that one unit of flow is to be routed over this network.

Assume first that the flow through the subnetwork G0 is
routed selfishly, i.e., according to Wardrop equilibrium. It can
be seen in this case that

√
c units of traffic is routed through

the subnetwork, leading to a total cost of C(xWE) = c, and
a subnetwork cost of CG0(x

WE) = c
√

c.
Assume next that the flow through the subnetwork G0 is

routed optimally, i.e., the flow is routed through the overall
network according to POR equilibrium. Assume that the con-
stant c ∈

[
1− 2

3
√

3
, 1
]
. It can be seen in this case that the entire

traffic is routed through the subnetwork, leading to a total and
subnetwork cost of C(xPOR) = CG0(x

POR) = 1− 2
3
√

3
. Note

that for c
√

c < 1− 2
3
√

3
, we have CG0(xPOR) > CG0(xWE).

As the preceding example demonstrates, lower-layer traffic
engineering may prefer selfish to optimal routing. It is equally
easy to construct examples where optimal routing will be
preferred. The simplest example is a situation in which the
total traffic entering the subnetwork is constant, regardless of
whether selfish or optimal routing is used. This will be the
case in the example above when c > 1, and a similar analysis
immediately implies that optimal routing will be preferred
within the subnetwork in this case.

To gain more insights, let us next consider a “partial
equilibrium” analysis of routing within a subnetwork, taking
the strategies of all other subnetworks as given. To illustrate
the main issues, we consider a network consisting of parallel
links between a single origin-destination pair with d units of
total traffic. Suppose that there are N + 1 providers and each
network provider owns a subset of the links in the network.
We represent network provider i, for i = 1, . . . , N , by a single
link with effective latency li (corresponding to the intradomain
routing policy chosen by provider i, whether optimal routing
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or not). We assume all these latency functions li are continuous
and strictly increasing.

As in the preceding discussion, we assume that if provider
0 pursues an optimal intradomain routing policy, then the
effective latency is given by l0, and if provider 0 allows
purely selfish routing within his network (corresponding to a
Wardrop equilibrium), the effective latency is l̃0. To simplify
the discussion here, let us also assume that l0 and l̃0 are
both continuous and strictly increasing (this will be the case,
for example, when all latency functions of the links in the
subnetwork are continuous and strictly increasing). As before,
recall that l̃0(x) ≥ l0(x) for all x ≥ 0. Moreover, for
simplicity, let us assume that l̃0(x) > l0(x) if x > 0 (though
the arguments can be generalized to the case without this
assumption).

We assume that the subnetwork owner can randomize
between the two policies, so any convex combination of
optimal and selfish routing can be achieved. In other words,
the subnetwork owner chooses a δ ∈ [0, 1] corresponding to
an effective latency given by:

m0 (x, δ) = (1 − δ) l0 (x) + δl̃0 (x) ,

where δ = 0 corresponds to optimal routing, while δ = 1
corresponds to selfish routing.

We continue to use xPOR to denote a Wardrop equilibrium
with respect to the latency functions m0, l1, . . . , lN , so that
xPOR satisfies:

m0(xPOR
0 , δ) ≥ λ;

li
(
xPOR

i

) ≥ λ for i = 1, ..., N ;
N∑

i=0

xPOR
i = d ;

xPOR
i ≥ 0 for i = 0, ..., N ;

λ = min
{
m0

(
xPOR

0 , δ
)
,

l1
(
xPOR

1

)
, . . . , lN(xPOR

N )
}

.

First consider the routing of flow through the links
1, . . . , N . If a total flow x is routed through links 1, . . . , N ,
then the resulting flow allocation must satisfy:

li(xi) = min{l1(x1), . . . , lN(xN )} if xi > 0; (22)
N∑

i=1

xi = x; (23)

xi ≥ 0, i = 1, . . . , N. (24)

In view of the assumption that l1, . . . , lN are strictly increas-
ing, the preceding equations have a unique solution. We define
lR(x) as the latency at this solution, i.e.,

lR(x) = min{l1(x1), . . . , lN (xN )},
where (x1, . . . , xN ) is the unique solution to (22)-(24). Since
each li is strictly increasing and continuous, the function lR
is also strictly increasing and continuous.

Next consider the traffic engineering problem faced by
subnetwork 0. The network provider will choose a value of δ
that minimizes the total latency inside the subnetwork, given
that traffic will follow the Wardrop equilibrium pattern for

the resulting effective latencies. Formally, the optimization
problem of subnetwork 0 is the following:

min
0≤x0≤d,δ∈[0,1]

(
(1 − δ) l0 (x0) + δl̃0 (x0)

)
x0 (25)

subject to

(1 − δ) l0 (0) + δl̃0 (0) ≥ lR (d) , if x0 = 0;
(1 − δ) l0 (d) + δl̃0 (d) ≤ lR (0) , if x0 = d;

(1 − δ) l0 (x0) + δl̃0 (x0) = lR (d − x0) , if 0 < x0 < d.

Since l̃0(x0) ≥ l0(x0) for all x0 ≥ 0, and lR is strictly
increasing, as δ increases from δ = 0 (purely optimal routing)
to δ = 1 (purely selfish routing), the flow routed through
subnetwork 0 at the POR equilibrium must be nonincreasing.

Next note that when l̃0(0) ≥ lR(d), the subnetwork can
achieve the minimum total latency of zero by choosing δ =
1 (since the POR equilibrium will route no traffic across
subnetwork 0). Similarly, if l̃0(d) ≤ lR(0), then regardless
of provider 0’s policy, all the flow will be routed across
subnetwork 0. As a result, in this scenario the optimal strategy
is δ = 0 (optimal routing), as this minimizes the total latency.
For the remainder of this section, we assume that l̃0(0) <
lR(d) and l̃0(d) > lR(0). Since l̃0 ≥ l0, this also implies

l0(0) ≤ l̃0(0) < lR(d). (26)

We now proceed to define the maximum and minimum flow
that will flow through subnetwork 0 over all possible choices
of routing policy. The condition (26), together with the fact
that l̃0 and lR are strictly increasing and continuous, ensures
that the following equation has a unique solution xMIN

0 > 0:

l̃0(xMIN
0 ) = lR(d − xMIN

0 ).

Moreover, given our assumptions, xMIN
0 is the minimum flow

that can go through subnetwork 0 (achieved exactly when δ =
1, i.e., at purely selfish routing).

The maximum possible flow through subnetwork 0 will
depend on the relative values of l0(d) and lR(0). Formally,
we define xMAX

0 as follows. If l0(d) ≤ lR(0), then we let
xMAX

0 = d, since choosing δ = 0 (optimal routing) will lead
to all traffic flowing through subnetwork 0. On the other hand,
if l0(d) > lR(0), we let xMAX

0 be the unique solution to the
following equation:

l0(xMAX
0 ) = lR(d − xMAX

0 ), if l0(d) > lR(0).

With these definitions, xMAX
0 is the maximum flow for

subnetwork 0 (achieved exactly when δ = 0, i.e., at optimal
routing). We define c0(xMAX

0 ) as the cost to the owner of
subnetwork 0 at this optimal routing; i.e.,

c0(xMAX
0 ) =

{
dl0(d), if l0(d) ≤ lR(0);
xMAX

0 lR(d − xMAX
0 ), if l0(d) > lR(0).

Clearly, any flow x0 ∈ [xMIN
0 , xMAX

0 ] is achievable. To
achieve a flow x0 ∈ [xMIN

0 , xMAX
0 ), the owner of subnetwork

should choose δ such that:

δ =
lR(d − x0) − l0(x0)

l̃0(x0) − l0(x0)
, (27)

where 0 ≤ δ ≤ 1 since: (1) the definition of xMAX
0 ensures

that lR(d − x0) > l0(x0); and (2) l̃0(x0) > l0(x0) for all



12 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 25, NO. 6, AUGUST 2007

x0 > 0. Finally, using the definition of δ in (27), observe that
for all x0 ∈ [xMIN

0 , xMAX
0 ), we have the relation m0(x0, δ) =

lR(d − x0). In other words, if the subnetwork owner chooses
policy δ according to (27), the flow through the subnetwork
will be x0, and the resulting latency will be lR(d − x0).

As a result, the optimization problem for the owner of
subnetwork 0 becomes:

min
{

min
x0∈[xMIN

0 ,xMAX
0 )

[x0lR(d − x0)] , c0(xMAX
0 )

}
, (28)

the solution of which determines the delay-minimizing rout-
ing policy of the subnetwork. If the solution yields x0 ∈
[xMIN

0 , xMAX
0 ), the subnetwork owner should choose δ in

accordance with (27). If the solution yields x0 = xMAX
0 ,

the subnetwork owner should choose δ = 0 (pure optimal
routing). If the game between service providers is one of
complete information, all the latency functions are common
knowledge and the owner of the subnetwork can compute
xMIN

0 , xMAX
0 , and lR, and hence the optimal flow through

the subnetwork. If we assume that l0(d) > lR(0), we can
intuitively understand the solution: If x0lR(d − x0) increases
as x0 increases in the neighborhood of xMIN

0 , the provider
will (locally) prefer selfish routing. Similarly, if x0lR(d−x0)
decreases as x0 decreases in the neighborhood of xMAX

0 , the
provider prefers selfish routing.

This analysis shows that with complete information and a
parallel-link network, the delay-minimizing policy of the net-
work is straightforward to characterize. We leave the analysis
of networks with more general topologies for future work.

VII. CONCLUDING REMARKS

This paper provides a model of partially optimal routing that
captures the essential features of the interaction between traffic
engineering, and selfish routing of end-to-end flows. While
source-destination pairs transmit flows across the least cost
paths, service providers controlling the subnetworks use traffic
engineering to reduce delay within their own administrative
domains. End-users perceive the delays resulting from the
traffic engineering of the network providers. We formulate
and analyze the equilibria of this global network with partially
optimal routing.

Even though traffic engineering within parts of the overall
network may be conjectured to reduce congestion externalities
and improve overall network performance, we show this not
to be the case. In particular, if the global network exhibits the
Braess’ paradox, traffic engineering that reduces delays within
a subnetwork may worsen the performance of the overall
network. More specifically, we prove that if partially optimal
routing leads to an increase in overall delay relative to selfish
routing over all links, Braess’ paradox must occur in the global
network.

Much of the paper quantifies the potential inefficiency of
partially optimal routing relative to the system optimum in
the case where all independently-operated subnetworks have
single entry-exit points and delays can be modeled by latency
functions of a specific class, such as affine or nonnegative
polynomials of bounded degree. For example, with affine la-
tency functions, we establish that the performance of partially

optimal routing is no worse than 25% relative to the system
optimum.

In contrast to these results that match the corresponding
bounds for selfish routing throughout the whole network, when
subnetworks have multiple entry-exit points, the performance
of partially optimal routing can be arbitrarily bad, even with
linear latencies. This result suggests that special care needs
to be taken in the regulation of traffic in large-scale networks
overlaying selfish source routing together with traffic engi-
neering within subnetworks.

We also provide conditions for service providers to prefer
to engage in traffic engineering rather than allowing all traffic
to route selfishly within their network. The latter is a possi-
bility because selfish routing may discourage entry of further
traffic into their subnetwork, reducing total delays within the
subnetwork, which may be desirable for the network provider
when there are no prices per unit of transmission.

We believe that the model of partially optimal routing
presented in this paper is a good approximation to the func-
tioning of large-scale communication networks, such as the
Internet, and raises a number of interesting questions for
further investigation. Possible areas of further study include:

1) An average-case analysis for an appropriate stochastic
model of traffic demands, rather than worst-case analy-
sis.

2) Quantification of the loss of efficiency of partially
optimal routing relative to selfish routing throughout the
entire network.

3) Analysis of simple regulation schemes that can prevent
realization of worst-case performance losses in networks
with partially optimal routing.

4) Quantification of the loss of efficiency of partially
optimal routing relative to the system optimum in spe-
cific network topologies incorporating subnetworks with
multiple entry-exit points.

5) Analysis of the equilibrium of routing patterns when
multiple service providers simultaneously and strategi-
cally decide the extent of traffic engineering.

6) Analysis of partially optimal routing when service
providers use traffic engineering for objectives other
than minimizing total delay (e.g., loss minimization or
fault tolerance).

7) Analysis of partially optimal routing when service
providers do not simply minimize total delay, but charge
for transmission through their networks and maximize
profits, taking into account the impact of delays within
their network on their revenues.
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